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Abstract

The use of higher order autocorrelations as features for
pattern classification has been usually restricted to second
or third orders due to high computational costs. Since the
autocorrelation space is a high dimensional space we are
interested in reducing the dimensionality of feature vectors
for the benefit of the pattern classification task.

An established technique is Principal Component Anal-
ysis (PCA) which, however, cannot be applied directly in
the autocorrelation space. In this paper we develop a new
method for performing PCA in autocorrelation space, with-
out explicitly computing the autocorrelations. The connec-
tions with the nonlinear PCA and possible extensions are
also discussed.

1. Introduction

In most pattern recognition problems, each pattern can
be viewed – at a raw level – as a scalar function of time
or spatial coordinates. In many cases, a translation or a
scale change has no effect on class membership. Regard-
ing each pattern as a point in a vector space, we wish to
map all points corresponding to translated (or scaled) ver-
sions of one pattern in a single point. In addition, patterns
which differ in other ways should map into distinct points,
and in some sense, patterns which are similar should map
into points that are close together.

The higher-order measures possess the uniqueness prop-
erty for even orders [6] and they are shift–invariant. Higher-
order autocorrelations have been previously used as features
describing patterns ([4], [5], [6], [8]), but their applicabil-
ity has been usually limited to second or third orders and a
small local neighborhood, due to high computational costs.
Exceptions are [6] and [8] where the use of higher order au-
tocorrelations has been shown to increase the discrimination
power.

On the other hand, the dimensionality of the autocorre-
lation space grows combinatorially as the order of autocor-
relations increases. This justifies the search of a lower di-
mensional space in which data could be represented accu-
rately enough, while preserving its intrisic dimensionality.
A standard technique for dimensionality reduction is Princi-
pal Component Analisys (PCA). However, performing PCA
requires the covariance matrix to be computed, an operation
which is much too expensive in the case of higher order au-
tocorrelation features as it relies on the explicit computation
of the autocorrelation vectors. By consequence, other ways
of performing PCA in autocorrelation space must be sought.
In this paper we develop such a technique which avoids di-
rect computation of autocorrelations. Also, we will show its
connections with non-linear versions of PCA, such as Ker-
nel PCA.

The paper is organized as follows: Section 2 discusses
general properties of autocorrelation functions, Section
3 develops the PCA in autocorrelation space, Section 4
presents some experimental results and, finally, Sections 5
and 6 discuss some extensions to nonlinear PCA and differ-
ent neighborhood topologies and draw some conclusions.

2. Higher Order Autocorrelations

Let ψ : D ⊆ Rm → R be a real-valued function. Then
the associatedn-th order autocorrelation function is defined
as

r
(n)
ψ (τ1, . . . , τn) =

∫

D

ψ(t)
n∏

k=1

ψ(t + τk)dt (1)

It is easy to see thatr(n)
ψ is shift-invariant, in the sense that

ψ(t) andψ(t+τ) have the samen-th order autocorrelation.
On the other hand, for two functionsψ1 andψ2 it can

be proven ([6]) that the second order (and higher even or-
der) autocorrelation functions are equal only ifψ1(t) =
ψ2(t+ τ), meaning that the two patterns have the same rep-
resentation in autocorrelation space ifψ2 is a shifted version
of ψ1.



This also means thatψ1 can be recovered fromr(2k)
ψ1

ex-
cept for an unknown translationτ . Generally, in the case of
pattern recognition, this is a valuable property.

Considering the set of admissible values forτk being
discrete and havingmk distinct values, it follows that the
space ofn-th order autocorrelations has

∏n
k=1 mk dimen-

sions, making the explicit computation of autocorrelations
prohibitely expensive.

For two given functionsψ1 andψ2, the inner product of
the correspondingn-th order autocorrelations is given by
([8]):

〈r1, r2〉 =
∫

T

{∫

D

ψ1(t)ψ2(t + τ)dt

}n+1

dτ (2)

For anyψ, the values ofr(n)
ψ (τ1, . . . , τn) can be ordered

sequentially, obtaining a (column) vectorr(n)
ψ . To simplify

notation, we will denote byrk the vector1 corresponding to
r(n)

ψk
. In the following, we will investigate the properties of

those vectors, using the discrete version of (2):

〈r1, r2〉 =
∑

τ∈T

{∑

t∈D

ψ1(t)ψ2(t + τ)

}n+1

(3)

whereτ andt take values in the discrete corresponding sets
T andD, respectively.

Let now {r1, . . . , rm} be a set of linearly independent
autocorrelation vectors (not necessarly orthogonal) and let
r be a new vector to be projected on the space spanned by
{rk}m

k=1. The vectorr can be decomposed into two com-
ponents:

r = rW + r⊥W (4)

whererW ∈ W = Span({rk}) andr⊥W is orthogonal on
W . SincerW is a linear combination of vectorsr1, . . . , rm,
there exists a vectorc ∈ Rm such as

rW = Rc (5)

whereR = [r1| . . . |rm] is the matrix built with the basis
vectors. From (4) and using the fact thatr⊥W is orthogonal
onW we have

R′r = R′rW = R′Rc (6)

It follows that

c =(R′R)−1R′r

rW =R(R′R)−1R′r
(7)

1The transpose of a vectorr will be denoted byr′. The similar notation
will be used for the transposed matrices.

Thus we have the orthogonal projection ofr onW . Fur-
ther, we can obtain the modulus of the projection and the
distance from the spaceW by

‖rW ‖2 = 〈rW , rW 〉 = (R′r)′(R′R)−1(R′r) (8)

‖r⊥W ‖2 = ‖r‖2 − ‖rW ‖2 =

〈r, r〉 − (R′r)′(R′R)−1(R′r)
(9)

Note that all productsR′r and R′R imply only compu-
tations of inner products between autocorrelation vectors
which can be computed by means of (2)-(3), avoiding the
explicit computation of autocorrelations.

3. PCA in Autocorrelation Space

Principal Component Analysis (PCA) is a technique for
extracting the structure from a high-dimensional data set.
PCA can be viewed as an orthogonal transformation of the
coordinate system in which the data is described. This
transformation is performed in the hope that a small num-
ber of principal directions will suffice to well-approximate
the data. There are different methods to perform PCA, the
most common requiring the diagonalization of the covari-
ance matrix, or, equavalently, to solve the eigenproblem

Cλi = λivi (10)

whereC is the covariance matrix andλi are the eigenval-
ues corresponding to the eigenvectorsvi. Naturally, we are
interested only in the non-trivial solution of (10).

Let {rk} be a set of mean-centered autocorrelation vec-
tors. The equivalent problem of (10) is

RR′vi = λivi (11)

where the elements of the matrixRR′ are formed by outer
productsrir′j . The rank ofRR′ cannot exceedm, the num-
ber of data/autocorrelation vectors, even if its dimensional-
ity is usually much bigger thanm × m. We can solve the
problem (11) indirectly, by first solving the smaller problem

R′Rwi = λiwi. (12)

By left-multiplying with R we obtain

(RR′)(Rwi) = λi(Rwi) (13)

If λi 6= 0 (the only case we are interested in), then

vi =
Rwi√

λi

(14)



is the solution of (11) whenwi is the solution of (12). Since
the ranks ofRR′ andR′R are equal, there are no eigenvec-
tors missed or added by this indirect method.

Then, the projections of the vectors{rk}k on the princi-
pal directions will be given by

ai = R′vi =
R′Rwi√

λi

(15)

Generally,vi are not validn-th order autocorrelations
so the projection of a vectorr on vi cannot be computed
directly as a simple inner product. Instead we have to use

r′vi =
r′Rwi√

λi

(16)

All of the above development has been done supposing
that the vectorsrk are centered around their mean. We will
remove now this restriction and we will prove that the cen-
tering in the autocorrelation space can be carried out in-
directly, without computing the autocorrelations. In (11-
16) we have to replace the matrixR with R∗ whereR∗ =
[r1 − r̄| . . . |rm − r̄], with r̄ being the mean autocorrelation
vector. Computing the productR′∗R∗ reduces to compute
the inner products〈ri − r̄, rj − r̄〉 for all i, j = 1, . . . , m:

〈ri − r̄, rj − r̄〉 =

= 〈ri, rj〉 − 1
m

m∑

k=1

〈ri, rk〉

− 1
m

m∑

k=1

〈rj , rk〉+
1

m2

m∑

k,l=1

〈rk, rl〉

(17)

which translates into

R′∗R∗ = R′R− 1
m

1mm(R′R)− 1
m

(R′R)1mm

+
1

m2
1mm(R′R)1mm

(18)

where1mm is anm×m matrix of ones.
Finally, we have to compute the projection ofr∗ = r0 −

r̄ on the principal axis, wherer0 is a new autocorrelation
vector which has to be projected on the principal directions.
Similar to (18), we have:

r′∗R∗ = r′0R− 1
m

11m(R′R)− 1
m

(r′0R)1mm

+
1

m2
11m(R′R)1mm

(19)

and from (16) we have the projection on thei-th principal
direction:

r′∗v∗i =
r′∗R∗w∗i√

λ∗i
(20)
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Figure 1. Classification rate as a function of
autocorrelation parameters (orders and dis-
placements)

wherev∗i,w∗i andλ∗i are obtained by considering equa-
tions (12) and (14) withR∗ replaced forR.

4. Experiments

In order to assess the validity of the method presented
here, we carried out a number of tests on the datasetWave-
form from the UCI database ([1]). The set consists of 5000
samples of1D signals, distributed equally in 3 classes. The
goal of the experiment was to study the influence of differ-
ent parameters in a binary classification task: discriminate
between the first class (calledA) and the other two (B and
C) (see Figure 1).

The discrimination function was based on thedistance
from feature space(Dffs):

r ∈ A ⇐⇒ Dffs(r, A) ≤ θ (21)

In all experiments, 500 vectors from classA (randomly
chosen) have been used to perform PCA in autocorrelation
space, and to determine the threshold. Other 500 vectors
from classA and 500 from classesB and C have been
used to test the classification. Table 1 presents some re-
sults obtained by autocorrelations features in comparison
with some other methods (notation ACorr(n,d) is used to
designate an autocorrelation function of ordern applied on
a neighborhood of sized).

5. Extensions

5.1. Kernel PCA in Autocorrelation Space

While developing PCA in autocorrelation space we were
interested in expressing all the computations in terms of



Table 1. Classification rates (%)
Method Rate
Optimal Bayes classifier ([1]) 86.0%
Nearest Neighbor ([1]) 78.0%
CART decision tree ([1]) 72.0%
ACorr(2,5) 80.5%
ACorr(2,7) 79.0%
ACorr(3,5) 81.6%
ACorr(3,7) 78.0%
ACorr(4,5) 81.5%
ACorr(4,7) 80.0%

inner products of autocorrelation vectors. As a result, the
eigenproblem to be solved was

R′∗R∗w∗i = λ∗iw∗i (22)

Now, if Φ : A → Rp is a mapping from the autocorrelation
space to some feature space, then the matrixK∗ = R′∗R∗
can be viewed as a kernel matrix ([11]) forΦ(r) = r. In
general, the kernel matrix has the following form:

K = [〈Φ(ri), Φ(rj)〉]ij (23)

but, for the majority of the kernel functions used in practice,
it can be expressed as

K = [Ψ(〈ri, rj〉)]ij (24)

The latter form can be directly plugged into (18) resulting
in a kernel–based PCA in autocorrelation space.

5.2. Multi–order Autocorrelation Vectors

Combining autocorrelations of different orders in the
same feature vector proved to be a useful technique ([8]).
This can be achieved by simply considering the extended

feature vectorsz{n1,...,nk}
ψ =

[
(r(n1)

ψ )′, . . . , (r(nk)
ψ )′

]′
, ob-

tained by concatenating the corresponding autocorrelation
vectors. Again, the inner product can be computed indi-
rectly, without computing the autocorrelation vectors them-
selves:

〈
z{n1,...,nk}

ψ1
, z{n1,...,nk}

ψ2

〉
=

∑

n∈{n1,...,n2}
〈r(n)

ψ1
, r(n)

ψ2
〉

(25)
On the other hand, one may consider the local neighbor-

hood over which the autocorrelations are computed (setT
in (2)) as being a union of partitions, obtaing a similar for-
mula, but with summation over the set of partitions.

6. Conclusions

In this paper we have shown that even if the autocorre-
lation feature vectors lie in a very high dimensional space,
using them is still a feasible task as long as the explicit com-
puting of autocorrelations can be avoided. The autocorrela-
tion functions possess a useful property alowing the easy
computation of their inner product, without computing the
autocorrelations themselves. This property is exploited and
a new method for performing PCA in autocorrelation space
is developped. The experimental results are very promising
and justify the presented approach.
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