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Abstract

The human impression of the color of an object is the same whether it lS viewed

foveally or peripherally, despite the non-uniformity of the spatial distribution of the

photoreceptors on the retina. It is proposed that it is precisely the changing retinal

signal resulting from moving the eye that leads to the perception of color constancy.

Adhering to a bilinear model, which provides a parametrization of surface patch and

illuminant spectra in a scene, the problem addressed in this thesis is defined to be

that of estimating these spectral parameters, given only the spectral response of the

sensoI. The Inherent non-uniqueness and thus ill-posedness of the problem lies in that

different spectra of lights and surfaces can lead to the same photosensor response.

In this thesis, a multi-sensor regularization technique that solves for the surface

refiectance and lighting parameters i8 developed. This technique sequentially acquires

measurements from independent sensors over the scene. Evidence for the parameters

is spatially accumulated through a Bayesian probability formulation, which is a sta­

tistical approach to designing solutions to perceptual problems. Two cases are pre­

sented: (i) one with two sets of sensors, each with different absorption characteristics,

and (ii) one in which there is a Gaussian variation in the absorption characteristics

across the photoreceptor array. Simulations indicate that there is improvement in the

parameter estimation with the additional information provided by the extra sensors.
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Improvement is also observed in the two-sensors case when the camera is moved to

acquire multiple images of the same scene.
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Résumé

Malgré la variabilité de la distribution spatiale des capteurs optiques de la rétine,

la perception par l'humain de la couleur d'un objet est la même qu'il soit vu au

niveau de la fovéa ou en périphérie. Il est proposé que la perception de constance des

couleurs soit due au signal rétinien variable qui résulte des mouvements de l'oeil. Le

problème adressé par cette thèse est celui d'estimer les paramètres spectraux d'un

modèle bilinéaire permettant la paramétrization d'une section de surface et d'un

spectre illuminant dans une scène, à partir seulement de la réponse spectrale du

senseur. La non-unicité, et donc la nature mal-posée inhérente au problème vient

du fait que plusieurs spectres différents de lumière et de surfaces peuvent mener à la

même réponse des photocapteurs.

Dans cette thèse, une technique de régularisation à senseurs multiples qui résout

l'équation en fonction du facteur de réflexion et des paramètres d'éclairage, est développée.

Cette technique acquiert séquentiellement des mesures de senseurs indépendamment

distribuées dans la scène. L'information nécessaire au raffinement des paramètres

est accumulée spatialement par une formulation probabiliste Bayésienne, une ap­

proche statistique pour l'élaboration de solutions aux problèmes perceptuels. Deux

cas sont présentés: le premier avec deux ensembles de senseurs ayant chacun des char­

actéristiques d'absorption différentes, et le second où les charactéristiques d'absorption

varient selon une distribution gaussiènne dans la matrice de capteurs optiques. Les
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simulations indiquent une amélioration de l'estimation des paramètres grâce è l'information

fournie par les senseurs additionnels. Une amélioration est également observée dans

le cas à deux senseurs, lorsque la caméra est déplacée pour capter plusieurs images

d'une même scène.
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CHAPTER 1

Introduction

Color perception has been a topie of great interest for researehers for quite a signifieant

amount of time. As a start, we shall define sorne reeurring terms, whieh we believe

will be keys in understanding the context of this thesis. Color is the quality of any

visual experience except its spatial attribute of extent or bulk, as defined by Helson

[26]. Judd [28] defines surface color as the color experienced as a property of a

surface. He also defines lightness as the attribute of any surface color that permits it

to be classified as equivalent to sorne member of the series of gray level values ranging

between black and white. Refiectance, according to Helson [26), is defined as the

fraction of the incident light which a hypothetical perfectly diffusing sample would

need to refiect in order to yield the same brightness as the actual sample under the

same conditions of illuminating and viewing.

Color vision and color perception deal with the eye, the incentive for computer

vision research, and its primary stimulus, light. The human retina is clearly non­

homogeneous, but the human perception of color is remarkably invariant to eye posi­

tion [38] and also invariant to illuminant changes. In other words, the human visual

system can differentiate between illuminant changes and changes in surface colors. If

we, humans, look at a green rectangle under daylight and then under incandescent
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light, we would see it as having two different calaIs, but we would still perceive it as

having the same color. However, can a robot perceive that rectangle as having the

same green color under those two different lighting conditions?

Clark and O'Regan [8] proposed that the human visual system uses a stable-world

assumption in developing position invariant color perception. In their approach, it

i8 precisely the changing retinal signal re8ulting from moving the eye when viewing

a stable colored surface patch that determines the perceived color. We propose that

color constancy, the perception of a constant color across variations in illumination,

can be explained by a process similar to Clark and O'Regan's explanation of color

stability across eye movements.

Brainard and Freeman [7] used a Bayesian technique to regularize the problem of

estimating surface and light source colors. The main focus of this thesis is to estimate

surface and light source colors using Brainard and Freeman's Bayesian approach as

it makes clearer the connection from earlier computational approaches to color con­

stancy (to be discussed in Chapter 2), on one hand; yet it still retains the sensorimotor

nature of the Clark-O'Regan learning approach, on the other hand. The main contri­

butions of our work are in extending the Brainard-Freeman technique by using a large

set of independent sensors, which will be described in a later section. Following the

next section, which describes the motivation for this research, Section 1.2 concludes

this chapter with a brief overview of this thesis and its organization.

1.1. Motivation

Why Color and why color constancy, in particular? Color vision is a very interest­

ing aspect of computer vision, as it helps in the process of perception or understanding

of the visual scene. Clearly, the colors recorded by a device should be constant across

2
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a change in the scene illumination in order to improve object recognition, in particu­

lar, and the perception process, in general. In other words, if the color of an object

were to be a cue in the recognition task, then this color should be constant despite

variations in illumination. In addition to perception, other applications, such as digi­

tal photography, require color constancy across a scene in order to capture consistent

images. Furthermore, if a photograph is meant to be an accurate representation

of what the photographer saw, then the scene illumination in the photograph must

be corrected in the same way as the human visual system corrects partially for the

prevailing scene illumination [21]0 Other industrial applications require stable color

constancy algorithms in order to be carried out successfully. In health inspection

applications, variation in illumination should not affect the perception of the color of

products in classifying them as good or bad. Also, in dentistry applications, match­

ing false teeth to the original ones requires the perception of constant color despite

variations in illumination. AH of these problems are very likely to occur, as lighting

conditions tend to vary easily from one location to another.

Despite the importance of color as described above, there is no reliable algorithm

for recognizing the color of an object under different lighting conditions. This prob­

lem is ill-posed like many problems in computer vision, which have to recover 3D

properties of surfaces from 2D images [5]. A problem is well-posed in the sense of

Hadamard [24] if it has a solution, this solution is unique, and the solution varies

continuously with a set of data or the solution is stable. If a problem does not satisfy

aU three of these conditions, then it is said to be ill-posed. Many inverse problems

are ill-posed. Vision problems are often inverse problems, and they also tend ta be

ill-posedo A regularization technique [40] can be used to make the problem well posed

and thus solvable. The regularization technique used in this thesis is the Bayesian

3
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approach which is a statistical approach [4, Il]. This method is utilized in this work

to design solutions to our perceptual problem. It is described in detail in Section 2.2.

The human retina is non-uniform and non-homogeneous, as the spatial distri­

bution of its photoreceptors, the rods and cones, is irregular and the density of the

receptors decreases steadily away from the central region, or fovea. Less well-known

is the fact that the retina has a marked non-homogeneity in the spectral sensitivity

of its photoreceptors. The retina has a smaU, yeUowish central region, which is called

the macula, and it is the area providing the clearest, most distinct vision. In the

central, or macular, region there exists three wavelength selective photoreceptor cone

classes, of which the long and medium wavelength sensitive are most numerous. In the

periphery, short wavelength cones are more prevalent than the other two cone classes.

An additional non-homogeneity arises from the fact that the macular pigment, which

is a yellowish jelly that covers the macula, absorbs up to 50% of the light in the short

wavelength range [6], causing a significant shift in the color sensitivity of foveal recep­

tors. For small pupil sizes the absorption of the lens material, which is supposed to

focus light onto the retina, also provides a wavelength dependent attenuation, similar

in effect to the macular pigment absorption. In spite of these non-homogeneities, the

human perception of color is remarkably invariant to eye position. We have the sub­

jective impression that the color of an object lS the same when viewed peripherally

as when viewed foveally.

In this thesis we propose that color constancy, the perception of a constant color

across variations in illumination, can be explained by a process similar to the Clark­

ü'Regan explanation of color stability referred to previously. Under this new view,

color constancy arises from the learning of the pattern of sensorY variation corre­

sponding to a stable physical aspect (the color of a surface patch) as the eye moves,

taken across a variety of different illumination conditions. In other words, perception

4
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of a canonical color, e.g. 'red', will occur whenever appropriate pattern of sensory

activity with respect to eye movements is obtained.

The approach that we will take in this thesis lS somewhat different from that taken

by Clark and O'Regan [8), and will follow the Bayesian approach of Brainard and

Freeman [7]. Our method, however, involves an extension of the Brainard-Freeman

technique to use a large set of independent sensors (corresponding to the photorecep­

tors at different retinallocations) from which measurements are obtained sequentially

(corresponding to moving the gaze across a surface patch). Two cases are studied,

one in which there are only two sets of sensors, each having a different spectral sen­

sitivity characteristic, the binary filter Bayesian formulation, and one in which there

is a smooth variation in the spectral sensitivity across the sensor array, the Gaussian

filter Bayesian formulation.

1.2. Thesis Overview

This thesis proposes a method for achieving color constancy by extending the

Brainard-Freeman approach, in which only one sensor was modeled. Chapter 2 de­

scribes the latter in addition to other approaches necessary to clarify it. In our

approach, measurements are acquired from a large set of independent sensors, which

are described in Chapter 3, which also derives the posterior of the Bayesian prob­

ability formulation in both cases. Chapter 4 details the simulations; in particular

it explains how the scenes were constructed and how the individual terms of the

Bayesian probability formulation were arrived at. Chapter 5 shows the experimental

results, which were carried out in our laboratory and compared to the simulations

done in Chapter 4. Last but not least, Chapter 6 condudes this thesis and provides

sorne insight into future work, which may be done to improve on the results.

5



CHAPTER 2

Previous Approaches

Color constancy, which is the perception of a constant color across variations in

illumination, has been a topic of chief interest in the psychology of color since the

beginning of the twentieth century. This problem has been addressed by Ives in 1912

[27], for example, who stated, "The ... problem ... of constant color appearance is

met by Just one condition, namely restriction to one light source of constant spectral

character." This is obvious, as we humans see an object under lights of different

spectra as having different colors, but we perceive them as having the same color.

Later on, Finlayson et al. [19] define color constancy as the ability to discount the

effect of the illuminant. A color camera, like the human eye, has three color sensors;

therefore, in a color image each pixel is a three dimensional vector, RGB, having one

component per sensor channel (Red, Green, Blue). Reviewing the research that has

been done in the field of color constancy brings us upon several approaches devised

to explain human color constancy, which served as a key later on to formulate models

for machine color constancy. In fact, many authors have tried to solve the under­

constrained problem by making additional assumptions about the world.

The Retinex theory of Land [29] was one of the first computational theories which

attempted to explain human color constancy. This theory is based on the observation
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that the light incident on a white patch is, after refiection, spectrally unchanged,

which means that is has the same spectrum. AIso, a white refiectance must induce

maximal RGB camera responses; therefore, the R, G, and B responses can be used

as an estimate of the color of the scene illuminant.

The chromaticity constancy problem has proven to be much easier to solve than

the color constancy problem. A chromaticity vector can be calculated from a color

vector as follows:

R,=R G,=G B
B' B' 1 = B' (2.1)

8ince the third component of the chromaticity vector is always 1, it can be represented

as a 2D vector (R', G' ). This implies that the 3D space in color coordinates is

narrowed down to a 2D space in chromaticity coordinates. Finlayson [18] made two

important observations. First, the gamut of aH possible image chromaticities depends

on the illuminant color. Furthermore, the illuminant color is limited. According to

Finlayson, an image chromaticity is said to be consistent with a particular light if it is

within the gamut of aH possible chromaticities under that light. A single chromaticity

will be consistent with many illuminants or an illuminant set, and the set of feasible

illuminants is the set resulting from the intersection of aU the illuminant sets. Then

selecting the median or mean illuminant from the feasible set would lead to good

color constancy, with a few exceptions.

D'Zmura and Lennie [16] propose a model that finds the colors of objects, and

this model depends on light adaptation mechanisms as weH as eye movements. They

suggest that after performing principal components analyses [11, 32) on daylight and

surface refiectances much of the variance of these domains may be accounted for by

only a smaH number of components. They show in [16] how mechanisms of light

7
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adaptation can find and discount the illuminant and then proceed to show how a

stable hue descriptor can be obtained.

Finlayson, Funt, and Barnard describe the varying illumination algorithm [20].

Their approach differs from other approaches in that they vary the lighting conditions

in order to obtain three RGB measurements for each surface, two under unknown

illumination conditions and one under a canonical illumination condition. According

to Finlayson et al. [20], the function that maps the RGB measurements obtained

under the unknown illumination to those obtained under the canonical illumination

solves the color constancy problem. Finlayson, Hordley, and HubeI [21] describe a

technique to recover the ambient light in the scene hoping that after the light is known,

the color of the surface can be easily recovered. They build a correlation matrix to

correlate possible image colors with each of the set of possible illuminants. For each

illuminant, they characterize the range of possible colors or chromaticities that can

be observed under that light, and they build a probability distribution that gives the

likelihood of observing an image color under a given light. Therefore, their algorithm

requires sorne knowledge about the range and distribution of image colors that can

be recorded by a camera under a set of possible lights. An interesting and unique

approach to the problem of color constancy in the literature is the learning algorithm

developed by Funt et al. [23]. They hypothesize that a back-propagation neural

. network can learn the relationship between the image of a scene and the chromaticity

of scene illumination. Then the trained network would be able to determine the

scene illumination from its image; and therefore, the image colors could be corrected

relative to the illuminant. In fact, the neural network approach can defined as a

method of dealing with the inherent uncertainty of the problem.

The varying illumination, correlation, and learning approaches show how to com­

pute the illuminant only. The authors in [20, 21, 23] do not show how to compute the

8



CHAPTER 2. PREVIOUS APPROACHES

surface colom given the illuminants. This might be a trivial computation; however,

there may be sorne difficulties involved due to a particular computation.

Maloney and Wandell [30] described a bilinear model to attain color constancy,

which is detailed in Section 2.1. In their approach, the authors use the quantum

catch data first to obtain a description of an illuminant spectral power distribution

and then, in the second stage, recover descriptions of surface refiectance functions.

On the other hand, D'Zmura in [12] first recovers the refiectances and then the illu­

minants. For two-stage linear recovery ta be feasible, it is necessary that the number

of photoreceptoral types equals or exceeds either the dimension of the illumination

model or the number of the refiectance model. D'Zmura and Iverson approach the

problem of color constancy in [13] by using a bilinear model similar to that developed

by Maloney and Wandell [30]. They analyze a two-stage recovery algorithm for recov­

ering refiectance and illuminant descriptors from quantum catch data and determine

necessary and sufficient conditions for the recovery to work. Then they proceed to

present the model check algorithm, which is a way to test whether a given bilinear

model provides unique recovery. Further research done by D'Zmura and Iverson on

this work is described in [14, 15].

In recent work, the ill-posed nature of the color constancy problem has been

tackled using the Bayesian probability theory [37, 7, 21). Given sorne knowledge of

typical scenes, it is possible to calculate the probability of observing the chromatic­

ity under a certain illuminant. In this chapter, sorne work found in the literature

was briefly summarized and then the two fundamental algorithms to our model are

explained in detail in Sections 2.1 and 2.2, which indudes a probabilistic model.

Our color constancy algorithm builds on the Bayesian technique of Brainard and

Freeman [7], which in turn uses the bilinear model of Maloney and Wandell [30] to

9



2.1 THE MALONEY-WANDELL BILINEAR MODEL

provide a parametrization of the surface and illuminant spectra. We shaH describe

these two models in detail in the coming sections.

2.1. The Maloney-Wandell Bilinear Model

Maloney and Wandell [30] developed one of the most infiuential approaches to

color constancy, which has served as the inspiration for many subsequent techniques.

Their approach is based on providing parametric models for the spectra of the illumi­

nant and light sources, and then they proposed an algorithm for computing the model

parameters from measurements of the light refiected from a set of surface patches.

They start by describing the light arriving at location x on an array of sensors

by the function

(2.2)

E(À) is the spectral power distribution of the ambient light in the scene, and SX(À)

is the surface spectral refiectance, while À denotes the wavelength. Since there are p

classes of sensors at each location x, and the relative wavelength sensitivity of the kth

is Rk (À), the response recorded at each location is given by:

Sand E can be represented as hnear models:

n

SX = L0-jSj(À),
j=l

m

k = 1,2, ... ,p. (2.3)

(2.4)

E(À) = L EiEi(À).
i=l

(2.5)

10



2.1 THE MALONEY-WANDELL BILINEAR MODEL

In both cases, the basis functions are fixed and they are assumed known. The basis

functions, Sj(À), which correspond to the surface refiectances, are computed using

principal components analysis (see section 2.1.1) on a set of 150 Munsell color chips

(see Appendix A for details), which includes a wide range of colors. The basis lights

Ei(À) are computed using principal components analysis on a set of 622 functions

describing the spectral distribution of natural daylight measured over a range of

weather conditions and times of day. Therefore, finding the surface refiectance and

ambient light involves recovering the basis function weights 0"] and Ei- The sensor

responses are seen to be bilinear functions of the unknown basis function weights.

This bilinearity implies that the problem offinding the weights is ill-posed, as different

choices of E and ax can produce the same sensor measurements.

Substituting Equations 2.4 and 2.5 in Equation 2.3 yields the following equation:

n m

Pk = LajSj(À) LEiEi(À)Rk(À)dÀ,
j=l i=l

They rewrite Equation 2.6 as:

k=1,2, ... ,p. (2.6)

(2.7)

where D.E contains information about the light source in the scene. If the ambient

light is unknown, the equation above is unsolvable. Therefore, they concluded that

additional information is needed to solve the equation. This led them to suppose

that there are p = n + 1 linearly independent sensors. Then they determine the plane

spanning the sensor quantum catches, which would help them recover the ambient

light vector E. After recovering E, D.é is recovered and then the weights of the surface

refiectance function by inverting the transformation. Therefore, the sensors in this

case contain enough information to find the surface refiectance function.

11



2.1 THE MALONEY-WANDELL BILINEAR MODEL

Assuming that a surface can be modeled by only two basis functions is a very

harsh assumption made by Maloney and Wandell. They need such an assumption

because their algorithm requires more sensors than surface basis functions, and there

are only three types of sensors, the red, green, and blue. This a serious limitation of

the algorithm in the sense that it will not produce accurate results when presented

with surfaces that cannot be represented accurately with only two basis functions.

This observation was made by Parkkinen et al. in [36]. However, since the first

few principal components contain the most information, this assumption might work

out well. On the other hand, the number of sensors couId be increased with the

number of surfaces, such that p = n + 1, to get better results. However, having more

sensors means decreasing the spatial sampling density within individual sensor classes

and thus results in less resolution. Therefore, there is a trade-off between the two

approaches to solving the problem. Moreover, if the number of sensors were to be

increased, how would the correct number of sensors and the corresponding spatial

resolution of each be determined? This problem which resuIts from Maloney and

Wandell's attempt to solve the iU-posedness problem resulting from the bilinearity of

their formulation led us to consider the Bayesian approach, which builds upon their

model.

2.1.1. Principal Components Analysis. The approach of Maloney and

Wandell [30] described in Section 2.1 uses basis function expansions of the illuminant

and surface spectra as the parametric models. They determine the basis functions

through a principal components analysis, which is explained in this section.

Principal components analysis (PCA), which is also known as the Karhunen­

Loéve transformation, is a standard technique commonly used for data reduction

statistical pattern recognition and signal processing [11, 32]. Feature selection refers

to a process whereby a data space is transformed into a feature space, which has the

12
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same dimension as the original data space. This transformation is designed in such

a way that the number of dimensions can be reduced, which means that the data set

may be represented by a reduced number of "effective" features and stin retain most

of the intrinsic information content the data.

Let X denote an m-dimensional vector representing a certain environment. As­

sume that X has zero mean:

E[X] = O.

where E is the statistical expectation operator. Let q be a unit vector, also of dimen­

sion m, onto which the vector X is to be projected:

(2.8)

The projection A is a random variable and since the random vector X has zero mean,

the mean value of the projection A is zero too:

E[A] = qTE[X] = O.

The variance of Ais:

(J2 = E[A2 ]

=E[(qTX)(XTq)]

= qTE[XXT
] q

=qTRq.

The m-by-m matrix R is the correlation matrix of the random vector X:

(2.9)

(2.10)

(2.11)

13



2.1 THE MALONEY-WANDELL BILINEAR MODEL

The principal components can be found by solving the following equation:

Rq = À q. (2.12)

Equation 2.12 is recognized as the eigenvalue problem. The problem has nontrivial

solutions (Le. q -# 0) only for special values of À that are called eigenvalues of the

correlation matrix R. These are denoted by Àl, À2j ••• j Àm . The associated values

of q (Q1' q2, ... ,qm) are called eigenvectors, and they are unique assuming that the

eigenvalues are distinct. Then:

j=1,2, ... ,m. (2.13)

Let the eigenvalues be arranged in decreasing order:

(2.14)

so that À1 = Àmax • Let the associated eigenvectors be used to construct an m-by-m

matrix:

(2.15)

Therefore, combining the set of m equations represented in Equation 2.13, the fol­

lowing equation is obtained:

RQ=QA.

where A is a diagonal matrix containing the eigenvalues of R:

(2.16)

(2.17)

14
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The matrix Q is an orthogonal, unitary matrix, which means that its column vectors

(i.e. the eigenvectors of R) satisfy the conditions of orthonormality:

Equation 2.18 can also be written as:

1, j = i

0, j i- i
(2.18)

(2.19)

From equations 2.16 and 2.18, the eigendecomposition problem ofR can be formulated

by the foHowing equation:

(2.20)

After computing the eigenvectors of the correlation matrix, which are the same

as the principal components of the data, any m-dimensional vector x in the space

can be represented with l dimensions such that l ::; m. This is attained by discarding

those linear combinations of eigenvalues and eigenvectors that have smaH variance

(corresponding to smaH values of R) and retaining only those that have large variance

(corresponding to the largest eigenvalues of R). Therefore, the approximate vector x
can be represented as foHows:

1

X = Laiqi
i=l

l ::; m. (2.21)
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In conclusion, if l is much smaller than m, and the corresponding eigenvalues

),1, ),1+1, "'),m are negligible, then significant dimensionality reduction can be achieved.

In this thesis, for example, the 1250 Munsell patches [2] are represented with only 8

basis functions, which are obtained by principal components analysis, as we shaH see

in Chapter 4.

2.2. The Brainard and Freeman Bayesian Model

A "higher level" approach to the solution of color constancy is Brainard and

Freeman's algorithm [7], which builds on Maloney and Wandell's bilinear model [30]

described in Section 2.1. The bilinearity of the latter model implies that the prob­

lem of recovering the basis function weights of the ambient light Ci and the surface

refiectances a} is ill-posed, as different choices ofax and C can produce the same

sensor measurements. Brainard and Freeman used a regularization technique to solve

the problem of computing the values of the illuminant and surface parameters. The

regularization technique used is the Bayesian decision theory [4, Il], which is a funda­

mental statistical approach. This method is utilized in this work to design a solution

to our perceptual problem. This approach is based on the assumption that the the­

ory is posed in probabilistic terms, and that aH of the relevant probability values are

known. The Bayesian approach combines information contained in an image with in­

formation given a priori about likely physical configurations of the scene. This prior

information can resolve ambiguities in the image data.

Three probabilities are the basic terms of the Bayesian probability theory: the

prior, posterior, and likelihood. The prior probability describes what is known before

observing the data, while the posterior probability describes what is known after

observing the data. The likelihood can be thought of as a rendering equation and it

expresses the relation between the data and the parameters. Let the vector of the

16
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surface and illumination model weights be denoted as x, and the sensor responses

by y. We can obtain a statistical model for x by the conditional posterior density

function, p(xly), of x given the measurement:

. p(ylx) p(x)
p(xly) = pey) ~ p(ylx) p(x). (2.22)

pey lx) is the likelihood which models the relation between the illuminant spectrum

model, the surface spectra models and the sensor responses. p(x) represents the prior

information on the model parameters. p(y) represents the probability of the sensor

responses or the measurements. \Ve will drop it in the equations yet to follow because

of the fact that we are searching for minima, and having a normalization term will not

affect the locations of these minima. In the Brainard-Freeman formulation [7], the

prior is estimated through principal component analysis (PCA) techniques where the

principal components are built from the surface refiectances of a fixed set of Munsell

color patches (see Appendix A) [2, 36]. The likelihood p(ylx) is also represented by a

normal distribution. Given the posterior p(xly) they compute a loss function, which

they caU the Bayesian expected loss:

L(xly) = 1L(xlx)p(xly)dx. (2.23)

This function computes the penalty for choosing a single estimate x when the actual

parameters are x [4]. Brainard and Freeman choose an estimate for x such that the

loss is minimum. The loss function is shift invariant, such that it depends on the

difference x-x. In this case, the expected loss is simply the posterior convolved by

the loss function with its argument negated.

Why Bayesian estimation? Bayesian estimation provides a way to choose an

optimal estimate that uses aIl of the information contained in the data. What are the

drawbacks? It may be difficult to specify a prior distribution that adequately captures

17
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what is known about the structure of the parameters. In the case of color constancy,

the prior must specify how likely it is that a particular illuminant spectral power

distribution and surface refiectances will occur. Also, it may be difficult to determine

a 10ss function that captures how costly errors of different types are. Finally, it may

be computationally expensive to minimize the expected loss. Three types of mIes,

tackled by Brainard and Freeman [7], corresponding to minimizing the expected loss

are discussed below.

The maximum a posteriori (MAP) mIe corresponds to minimizing the expected

loss with respect to the minus delta loss function:

L(x, x) = -b(x - x). (2.24)

Convolving the posterior with the minus delta loss function does not alter the rela­

tive shape of the posterior; therefore the estimate that maximizes the posterior also

minimizes the corresponding expected loss.

The minimum mean squared error (MMSE) chooses the posterior mean as the

best estimate for the scene parameters. This estimator is widely used; for example, it

is used in Kalman filtering. The MMSE rule corresponds to minimizing the expected

loss with respect to the squared-error loss function [34]:

(2.25)

The maximum local mass (MLM) estimator corresponds to minimizing the ex­

pected loss for the local mass loss function:

(2.26)
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such that

(2.27)

For matrices K L of sufficiently small eigenvalues, this loss function rewards approxi­

mately correct estimates and penalizes aH grossly incorrect estimates equaHy.

In real computational vision problems, non-Gaussian or multimodal posterior

probability distributions occur. In these cases, the MAP and the MMSE can disagree

and both can be unsatisfactory unless the actual 10ss function for the estimation

problem matches that implied by the estimator. However, in more simple cases, both

the MAP and the MMSE rules provide intuitively plausible estimates that tend to

agree with each other, and the posterior probability mass would be well localized in

the scene parameter space.

According to Brainard and Freeman [1], the MAP estimator ignores relevant

information in the posterior distribution, since it takes into account the point of

maximum probability mass only; therefore it results in a systematic bias of its esti­

mates. In other words, the MAP estimator is sensitive to the height of the posterior

distribution only and ignores information in its structure, which might be important.

The MMSE chooses the scene parameter values that minimize the average squared

distance from the true scene parameter values. However, the MMSE estimate may

require a computationally intensive integration over the entire scene parameter space,

on one hand; on the other hand, it may select scene parameters which do not explain

the visual data at aH or which are nonsensical from a perceptual standpoint, and it

may penalize large errors too much compared to the MLM. In short, the MLM func­

tion takes into account both the shape and the structure of the posterior and is not

biased by the prior, so it produces the best results. Hs results are also consistent with

19



2.2 THE BRAINARD AND FREEMAN BAYESIAN MODEL

the observed data because the local mass function is set ta be local in the parameter

space.

Although the MLM would give the best results compared to the other two esti-

mators as discussed above, the MAP estimator was the one implemented in this thesis

because the MLM is computationaUy expensive. Brainard and Freeman in [1] show

the results of the MAP, MMSE, and MLM estimators in estimating the illuminant

power. They also show results for other algorithms: Gray World, Realizability 1,

Realizability 2, and Subspace. Brainard and Freeman's model was first implemented
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FIGURE 2.1. The estimated and actual spectra of the (a) illuminant, (b)
surface patch (MunseH patch 300) for the Brainard-Freeman Bayesian model
using the MAP estimate when there are multiple patches in the scene.

as mentioned in Chapter 1. The surface patch in this case is viewed with two other

patches in the scene under a certain light source. The estimated and actual spectra
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2.2 THE BRAINARD AND FREEMAN BAYESIAN MODEL

for both the illuminant and one of the surface patches in the scene are plotted in Fig­

ure 2.1. However, there are sorne cases for which their model does not work. This is

expected for an models, as they tend to pose assumptions, which in turn pose limita­

tions on the algorithm. The details of the simulations and an extensive discussion of

the results will be discussed in Chapter 4 in relation to the contribution made in this

thesis, which is an extension to the Brainard-Freeman Bayesian model as mentioned

in Chapter 1.
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CHAPTER 3

The Sequential Multiple Sensor Model

In this thesis, we introduce a strategy that is an extension to the Brainard-Freeman

Bayesian approach described in Section 2.2, in which only one sensor was modeled.

In our approach, measurements are acquired from a large set of independent sensors,

each with its own spectral sensitivities. The Inherent ill-posedness of the problem is

therefore addressed through the introduction of more sources of information. Mea­

surements are acquired sequentially from each sensor, much as when a person's gaze

moves across a surface in the scene. Color stability, as described by Clark and D'Regan

[8] is achieved through the accumulation of evidence from the various sensors through

a sequential Bayesian estimation process.

As in the Brainard and Freeman approach, we represent evidence for the lighting

and surface color parameters of either one or many surface patches in a scene by a

conditional probability density function, given the sensor measurements. This proba­

bilistic evidence is then accumulated sequentially over sensors with different spectral

sensitivities through a Bayesian chaining approach. We model two cases: (i) one in

which there are only two different types of sensors, and (ii) one in which there is a

smooth variation in spectral sensitivity curves across the sensor array. In practice,

this multi-sensor formulation can be modeled through the placement of a flUer with



3.1 THE BINARY FORMULATION

the appropriate absorption characteristics onto a single camera lens. In this case,

evidence can be accumulated spatially over the pixels of the image of the scene (see

Chapter 4).

3.1. The Binary Formulation

In this type of formulation, the measurements of a scene are acquired hy two

sensor types, each with a different spectral sensitivity. The measurements are assumed

to he conditionally statistically independent. It is also assumed that each individual

sensor actually produces three independent measurements, which are referred to as

R, G, and B.

3.1.1. A Single Patch. In this case there is only one surface patch in the

scene, illuminated with a single light source. Its RGB measurements from sensors of

type X will he denoted hy RGBx, and those from sensors of type Y will he denoted as

RGB y . The surface spectral model weights vector is denoted by a and the illuminant

spectral model weights vector hy b. Suppose that the patch is visible to both sensors

as shown in Figure 3.1. Let {RGB} denote the total set of measurements of the

scene:

{RGB} D. RGBx , RGBy .

To accumulate prohahilistic evidence of the scene over different sensors, we derive the

conditional posterior density function for the parameters, a and b, given the set of

measurements of the entire scene, {RGB}:

p(a,bl{RGB})

~ p({RGB}la, b) p(a, b)
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illuminant(b)

sensor X sensor Y

FIGURE 3.1. A single patch in the scene, illuminated with a single light
source viewed with two sensors or a binary filter, which has one dear part and
one part tinted yellow, for example, as discussed in Chapter 4 (represented
with the hashed part).

~ p(RGBx , RGByla, b) p(a, b)

~ p(RGBxla, b) p(RGByla, b) p(a, b)

~ p(a, bIRGBx ) p(RGByla, b). (3.1)

In obtaining this formulation, it lS assumed that the surface refiectance weight a is

statistically independent of the spectral function weight of the illuminant, b. From

Equation 3.1, we can conclude that the posterior for the entire scene is a function of

the posterior for one sensor (sensor X), which is p(a, bIRGBx ) and the likelihood of

the RGB measurement from the other sensor (sensor Y), which is p(RGByla, b).

3.1.2. Multiple Patches. In this case it is assumed that there are three sur­

face patches the scene, illuminated with a single light source. RGB measurements

of a particular surface obtained from sensors of type X will be denoted RGBxn , and
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those from sensors of type Y as RGByn , where n refers to the surface patch being

viewed. The surface spectral mode1 weight vector is denoted by an and the illuminant

spectral mode1 weights vector by b. Two cases are considered in this case. The first

one i8 when the image is acquired once, that is with a static camera, while the second

one is when the image of the scene is acquired several times, from different positions;

that is the camera is moved.

3.1.2.1. Static Camera. Suppose that surfaces 1 and 3 are visible to both

sensor types, while surface 2 is visible to sensor type Y alone, as shown in Figure 3.2.

Let {RGB} denote the total set of measureIIlents of the scene:

illuminant (b)

sensor X sensor Y

FIGURE 3.2. Three patches in the scene, illuminated with a single light
source viewed with two sensors or a binary friter, which has one dear part and
one part tinted yellow, for exampIe, as discussed in Chaptel' 4 (represented
with the hashed part).

{RGB} 11 RGBxb RGBxa , RGBYl , RGBY2 , RGBY3 .
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The conditional posterior density function for the parameters, al, az, as and b, given

the set of measurements of the scene, {RGB}, is given by:

p(aI, a2, a3, bl{RGB})

~ p({RGB}lal' a2, a3, b) p(al, a2, a3, b)

~ p(RGBx1 , RGBx3 , RGBYl , RGBy2 ,RGBY3 lar, a2, a3, b) p(al' a2, a3, b)

~ p(RGBx1 , RGBx3 Iar, a3, b) p(RGBYl ,RGBy2 , RGBy3 Iar, a2, a3, b) p(al' a3, b) p(a2)

~ p(al, as, blRGBxl, RGBx3 ) p(RGBYllal' b) p(RGBY2la2, b) p(RGBy3Ia3, b) p(a2)'

(3.2)

The assumptions made in obtaining this formulation, in addition to the statistical

independence of the measurements obtained, are stated here. First, it is assumed

that the prior probabilities for each surface refiectance weight an are statistically

independent of each other and of the spectral function weights of the illuminant, b.

It is also assumed that there is no interrefiection between surfaces, and therefore the

spectral refiectance for a surface and the lighting vectors are sufficient statistics for

the measurement of that surface. This leads to a simplification:

From Equation 3.2, we can condude that the posterior for the entire scene is a function

of the posterior for one sensor (sensor X), the likelihood of the RGB measurement

of the other sensor (sensor Y) and the prior of its spectral function weights. Given

the assumptions above, the posterior for sensor X can be obtained by:

p(al, a3, bIRGBx1 , RGBxs )

~ p(RGBxb RGBx31al' as, b) p(ar, as, b)
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~ p(RGBx1Ial, b) p(RGBx3Ia3, b) p(ad p(a3) p(b)

~ p(al, bIRGBx1 ) p(RGBx3ia3, b) p(a3)' (3.3)

Note that this posterior i8 a function of the likelihood and prior for surface 3, and

the posterior for surface 1.

3.1.2.2. Moving Camera, Passive vision may be very problematic due to

ill-posedness. Active vision techniques have been proposed to overcome some of these

problems [3]. The idea of active vision occurred to scientists from the way humans

perceive the world around them; that is humans always move their eyes, thus con­

stantly updating the image of the scene in front of them. This allows them to acquire

better knowledge of the world around them. Therefore, in our model, the camera is

moved to acquire multiple images of the same scene, similar to when a person moves

his/her gaze across the scene, and thus more information is gathered about the surface

patches.

Two cases are examined here. The first one is when the camera is moved once

(One Move), and the second is when the camera is moved twice (Two Moves).

One Move. In this case, the camera is moved once such that two images of

the scene are taken from two different positions. This makes the surface patches in

different locations with respect to the filter as shown in Figure 3.3. Two posteriors are

derived; the first one is Pl, which is that obtained from the first image after gathering

the fir8t set of data and P2 , which 18 that obtained from the second image after the

camera i8 moved and thus more data i8 gathered. Pl and P2 are derived as shown

below.
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illuminant(b)

sensor X sensor Y

move the
camera •

sensoy X sensor Y

Posterior Pl Posterior P2

FIGURE 3.3. Three patches in the scene, iHuminated with a single light
source viewed with two sensors or a binary filter, which has one clear part and
one part tinted yellow, for example, as discussed in Chapter 4 (represented
with the hashed part): The camera is moved once.

At the initial stage, that is before the camera is moved, the total set of measure-

ments denoted by {RGB} is given by:

The posterior can then be computed given the set of measurements {RGB} from the

sceue:

(3.4)
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The next step involves the movement of the camera and gathering a new set of

RGB measurements, which includes the old set and is given by:

{RGB} L;. RGBxb RGBx2 , RGBx3 , RGBYl , RGBY2 .

Pl acts as a prior for P2, which can now be computed given the new RGB measure­

ments:

P2 = p(al, a2, a3, bl{RGB})

~ p({RGB}Jal' a2, a3, b) p(al, a2, a3, b)

~ p(RGBx1 , RGBx2 , RGBx3 , RGBYl , RGBY2 lab a2, a3, b)

p(al, a2, a3, b)

~ p(RGBxl, RGBx2 , RGBx3Ial, a2, a3, b) p(RGBYl , RGBY2lal, a2, a3, b)

p(al' a2, a3, b)

~ p(al' a2, a3, bjRGBx1 , RGBx2 , RGBx3 ) p(RGBy1lal, b) p(RGBy2Ia2' b)

~ Pl p(RGBy2Ia2, b). (3.5)

Two Moves. In this case, the camera is moved twice such that three images of

the scene are taken from three different positions. This makes the surface patches

in different locations with respect to the filter as shown in Figure 3.4. In this case,

three posteriors are obtained: one from the set of data of each image. Pl and P2 can

be derived in a similar way as that shown in Equations 3.4 and 3.5. As explained

in the previous section, Pl acts as a prior for P2 . In this section, the camera is

moved a second time, and a new set of data is gathered, and thus a new set of RGB

measurements is obtained in addition to the old one that was obtained from the two

29



3.1 THE BINARY FORMULATION

sensor X sensor Y

Posterior Pl

move the
camera"'

sensor X sensor Y

sensor X sensor Y

Posterior P2

~le
camera

Posterior P3

FIGURE 3.4. Three patches in the scene, illuminated with a single light
source viewed with two sensors or a binary filter, which has one clear part and
one part tinted yeUow, for example, as discussed in Chapter 4 (represented
with the hashed part); The camera i8 moved twice.

initial movements. This new set of RGB measurements is given by the following

equation:

{RGB} b. RGBxl , RGBx2 , RGBx3 , RGBYl , RGBy2 , RGBy3 .
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3.1 THE BINARY FORMULATION

P2 acts as a prior for P3 :

P3 = p(ab a2, a3, bl{RGB})

~ p({RGB} lal, a2, a3, b) p(al, a2, as, b)

~ p(RGBxb RGBx2, RGBx3 , RGBYl , RGBY2 , RGBy3 1al, a2, a3, b) p(al, a2, as, b)

~ p(RGBxl' RGBx2 , RGBxslal' a2, as, b) p(RGBYl la3, b) p(RGBy2Ia3' b)

p(RGByslas, b) p(al, a2, as, b)

~ p(al, a2, as, bIRGBx1 , RGBx2, RGBxs ) p(RGBYllas, b)

p(RGBy2Ias, b) p(RGByslas, b)

~ P2 p(RGBys la3' b). (3.6)

The final posterior is Ps, which is obtained after the camera is moved twice and

the most data is gathered. In the same way as information is accumulated over

different sensors, information is accumulated over scenes, such that the posterior for

each image acts as a prior for the set of data of the next image. The posteriors

obtained from images due to additional moves can be derived in a similar way.

In short, the active Bayesian formulation is, in fact, recursive, where the posterior

for each sensor acts as a prior for the next sensor. This is similar to the recursive

nature of the strategy in the case of the surface patches, where the posterior of each

surface patch acts as a prior for the next surface patch. The addition of more surface

patches in the scene provides more information regarding the illumination and thus,

turn, about the surface colors themselves. On the other hand, moving the camera

provides more information about the scene as the surface patches are viewed from

different locations, and thus many images of the same scene are obtained.

31



3.2 THE NON-UNIFORM FORMULATION

3.2. The Non-Uniform Formulation

The non-uniform formulation is used for the case of a smooth variation in the

spectral sensitivities across the sensor array. The thickness of the covering of the

macula, which i8 the smaH, yellowish central portion of the retina, drops off with

eccentricity. AIso, there is a drop-off in the path length of light through the lens,

which focuses light onto the retina. A Gaussian falloff curve is used to model these

effects. In this section, as opposed to the previous section, the indices for the RGB's

are reversed. This means that the RGB measurements of a particular surface obtained

from sensors of type X will be denoted RGBnx , where n refers to the surface patch

being viewed.

3.2.1. A Single Patch. In this case there is only one surface patch in the

scene, illuminated with a single light source. The weight vedor for the surface patch

spectrum model shaH be denoted by al, while that for the light source spectrum

model shaH be denoted by b. Suppose that the surface has N sensor responses. Thus

the sensor responses can be denoted as {RGB}n ...IN l:>. RGBn , RGBI2 , ... ,RGBIN

where N is the number of sensor responses of the surface patch.

To make the idea simpler, we shaH assume that the patch has two sensor.responses

for now, which are 1 and 2 only. Therefore, the total sensor responses can be denoted

by {RGB} l:>. RGBn ,RGBI2 . The posterior for a scene that has a patch with such

specifications in this case can be formulated as:

p(aI, bl{RGB})

~ p({RGB} laI, b) p(all b)

~ p(RGBn ,RGBI2Ial' b) p(al, b)

~ p(RGBnlal' b) p(RGBI2Ial' b) p(al' b)
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3.2 THE NON-UNIFORM FORMULATION

(3.7)

This means that if a person is moving his/her gaze from a pixel that has a sensor

response of type 1 to one that has a sensor response of type 2, then the final posterior

would be a product of the posterior given that the person has seen the pixel of sensor

response of type 1 and the likelihood of the pixel the person is looking at right now,

which is the pixel that has sensor response of type 2. In a similar way, the posterior

for a scene containing a surface patch with N sensor responses (as described above)

can be derived, as shown in Equation 3.8 and based on the assumptions made in

Section 3.1.

p(al, bl{RGB}1l 1N)

~ p(al, bl{RGBll 1(N-l)}) p(RGBNlal, b). (3.8)

This means that the posterior of a surface patch is a product of the posterior of an

the surface patch pixels, except the last, that have been seen, and the likelihood of

the last pixel that is being looked at right now.

In short, the posterior for each surface is simply a recursive, sequential update

of the posterior given each of the sensor responses for that surface. Moreover, the

addition of more surface patches in the scene provides more information regarding

the illumination, and therefore, about the surface colors themselves.

3.2.2. Multiple Patches. In this section, the case where there are multiple

(three) surface patches illuminated with a single light source in the scene is considered.

Surfaces 1, 2, and 3 have N, M and K sensor response functions, respectively. Thus,

the sensor responses can be denoted as {RGB}nl...np Do RGBnb RGBn2, ... ,RGBnp

for each surface n, where p is the number of sensor responses for that surface.
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As a start, suppose we move our gaze from the last pixel of surface 1, for example,

to the first pixel of surface 2. Therefore, the total RGB set of measurements of the

scene, given what we have seen so far, is given by:

{RGB} A RGBn , RGB12 , ... ,RGB1N, RGB21 . (3.9)

The posterior for the scene based on what has been seen sa far can be formulated as:

p(al, a2, bl{RGB})

~ p({RGB}lal' a2, b) p(al, a2, b)

~ p(RGBll , RGB12 , .. · ,RGB1N, RGB21 Ial' a2, b) p(al, a2, b)

~ p(RGBn , RGB12 , ... ,RGB1N , lal, b) p(RGB21 Ia2, b) p(al, b) p(a2)

~ p(al, bIRGBll , RGB12 , ... ,RGB1N) p(RGB21 Ia2, b) p(a2)' (3.10)

Equation 3.10 shows that as we move our gaze from one surface to another, the

posterior for the scene becomes a product of the posterior of the scene as seen pre­

viously, the likelihood of the first pixel of the new surface that is being looked at,

and the prior for that surface. We can observe that the subjective prior term (e.g.

p(a2)) only comes in at the start of the recursion for each surface. In other words,

the posterior of the previous scene, given that we have seen surface 1 only, which is

formulated in Equation 3.8 acts as a prior for the new posterior, which is formulated

in Equation 3.10.

The measurements for the entire scene are given by the following equation:

{RGB} A RGBll , RGB12 , ... ,RGB1N, RGB2l, RGB22 , ... ,RGB2M , RGB31,

RGB32 , ... , RGB3K . (3.11)
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Based on the assumptions made in the previous section, the posterior for the entire

scene is again recursive and can derived in a similar way ta that used to derive

Equations 3.8 and 3.10. It is stated in Equation 3.12.

p(al l a2, a3, bl{RGB})

~ p(al, a2, a3, bl{RGB}n...IN, {RGBhl...2Ml {RGBhl...3K)

~ p(aIl az, bl {RGB}U... IN' {RGBhl...ZM) p({RGBhl...3K la3, b) p(a3)' (3.12)

This implies that the posterior is computed by multiplying the prior and likelihood

for the third surface by the p08terior from the first two surfaces, Le. the8e posteriors

become priors for the third surface. In short, the posterior for each surface i8 simply

a recursive, sequential update of the posterior given each of the sensor responses for

that surface.

For both of the cases described here we obtain a sequential update of the pos­

teriors given each of the sensors in turn. The result is that, for each surface patch,

each new sensor response leads ta an increase in information regarding the color of

the surface patch and the illumination. The addition of more surface patches in the

scene provides even more information regarding the illumination and thus, in turn,

about the surface colors themselves.
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CHAPTER 4

Simulation Results

In this chapter, we demonstrate the approach developed in Chapter 3 of this thesis by

presenting a series of simulations that were performed. We constructed "Mondrian"

scenes consisting of one patch, on one hand, and scenes consisting of several surface

patches, on the other hand. A "Mondrian" is a planar surface composed of several,

overlapping, matte (lambertian) patches [22]. These types of images are named

after the style of painting produced by the artist Piet Mondrian, who died in 1944.

A lambertian surface is one that refiects light uniformally in aH directions. The

light iHuminating a Mondrian scene is assumed locally constant; that is the spectral

characteristics of the light vary slowly. Almost aH color constancy algorithms are

defined for the Mondrian world. AH scenes were illuminated by a single light source.

Three cases were simulated. We first simulated the Brainard-Freeman case, where

there is no filter on the camera lens. Then the multi-sensor environment was intro­

duced, and it was modeled through the simulated placement of an optical filter onto

the (simulated) camera lens, which non-uniformly modifies the spectrum of the light

falling on the sensors. We then simulated the binary case, in which half of the filter
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is tinted yellow with the other half left transparent, and finaHy simulated the non­

uniform case, in which a fiIter with a Gaussian absorption profile is used; the center

is tinted deep yellow, and the color fades smoothly towards the periphery.

Section 4.1 describes the algorithm used in the simulations and how the com­

ponents of the Bayesian formulation were obtained. Then Section 4.2 illustrates

the behavior of our model by presenting the simulation results, which is mainly our

model's ability to give a reasonable estimate of surface patches and light source colors.

4.1. The Algorithm

The RGB components of each sensor's response were simulated by multiplying

the spectrum of the light passing through the optical fiIter by the sensor spectral

sensitivity curves, Rk (),), where k is the sensor number and À is the wavelength. In

order to simulate the real experiments, which we shall see in Chapter 5, noise was

added to the RGB measurements. Sources of noise in the real world could be the

fiickering of the light source while taking the images, dust on the camera lens, and

noise in the spectral response of the camera color filter. This noise is random and

has a normal distribution, which has a standard deviation of 10% of the entire range

of measurements for each of the red, green, and blue. In other words, the standard

deviation is 0.1 * (maxR,c,B - minR,C,B). For the purposes of our simulations, we

used the Stockman and Sharpe estimates for the sensitivities of the cones in the

human retina [39]. Randomly selected matte Munsell color patches (see Appendix A

for details on Munsell patches) [2] and random combinations of the Parkkinen and

Silftsen daylight and skylight spectra [35] to generate the spectrum of the light falling

on the sensor array were used.
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As for the Bayesian formulations, the likelihoods were computed using the model

predictions of the sensor measurements, which are given by Equation 2.3:

k =1,2, ... ,p.

The illuminant spectrum E(À) is modeled with five basis functions, while the surface

spectrum SX(À) is modeled with eight basis functions. They were assumed to have

Gaussian distributions. The basis functions for the surface spectrum model were taken

to be the principal components (see Section 2.1.1 for details on principal components

analysis) of the spectra of the 1250 Munsell color patches as measured by Parkkinen

et al. [36). The basis functions for the light source spectrum model were taken to

be the principal components (see Section 2.1.1) of the set of daylight and skylight

spectra as measured by Parkkinen and Silftsen [35]. The first five basis functions

of each of the 1250 Munsell color patches and the daylight and skylight spectra are

plotted in Figure 4.1. The number of basis functions plotted was limited to five for

reasons of clarity. Note that the basis functions start to become noisy after the first

five. Gnly the first eight are used for modeling the surface spectrum, while only

the first five are used for modeling the light source spectrum in the algorithm. The

prior distributions for the spectral model parameters are assumed to be independent

and Gaussian functions. The means and variances of the priors were computed from

the distribution of weights corresponding to the 1250 Munsell spectra and the 37

different skylight and daylight spectra that were used. These weights were obtained

by projecting the measured spectra onto the basis function sets.

The location of the maximum value of the posterior distribution was estimated

by a standard MATLAB optimization package. Since MATLAB does not have a

function that searches for a maximum value, the minimum of the negative of the

posterior distribution was searched for instead. The function used was "lsqnonlin",
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FIGURE 4.1. (a) Surface basis functions and (b) Daylight and Skylight
basis functions. "bf" stands for "basis function" .

which solves nonlinear least squares problems of the form:

(4.1)

where L is a constant. In Equation 4.1, x is the solution or the global minimum to

which the optimization algorithrn converges after an initial value xO is given to it.

In our application, xO is a vector of surface patch and light source spectra weight

vectors. The limitations of the algorithrn is that it may only give local solutions and

that the cost function f(x) in Equation 4.1 must be continuous. Therefore, choosing

the initial point is a very crudal issue. The searching scheme the "lsqnonlin" uses i8

the "Levenberg-Marquardt" algorithm [31]. A point worth rnentioning here is that
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the posterior function is a product of Gaussian functions; therefore, the logarithm of

this function is taken in order to convert it into a quadratic function, which would

have a form similar to that of Equation 4.1. After convergence, the optimization

results in a set of estimated surface patches and light source spectra weight vectors.

As mentioned in Chapter 2, the MAP (maximum a posteriori) estimator is u8ed

although it i8 not the best one, but it is not very computationally expensive.

4.2. Simulation Results

Experiments with either one or several surface patches in the scene, illuminated

with a single light source (as described in Chapter 3) were performed, and the resulting

estimates for the model and the actual spectra for the surface patches and the light

sources were plotted and the root mean square (RMS) errors were computed.

4.2.1. Single versus Multiple Patches. In this case, two cases were com­

pared. On one hand, there was only one patch in the scene, illuminated with a single

light source. On the other hand, there were multiple patches in the scene, illuminated

with the same light source. Two scenarios were considered: the Brainard and Free­

man case or equivalently, the 'no fllter' case, and the binary fllter case. Figures 4.2

and 4.3 show the results, and Table 4.1 depicts the RMS errors between the measure­

ment and the model spectra of the illuminant and surface patch spectra for the 'no

flUer' case.

In this case there is a slight improvement for the surface patch estimation but

not the illuminant as can be seen upon examining the RMS errors. However, we can

notice the improvement in the RMS error upon introducing the filter by comparing

the results in Tables 4.1 and 4.2.

In short, introducing more surface patches into the scene means having more

scene parameters: 8 for each surface and 5 for the light source, which makes a total
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FIGURE 4.2. The estimated and actuai spectra of the illuminant (number
9 from Parkkinen's set of spectra) for the 'no friter' case: (a) one patch in
the scene, (b) multiple patches in the scene.

Case Illuminant Surface Patch
Single Patch 0.1705 0.2313

Multiple Patches 0.2326 0.2713

TABLE 4.1. RMS errar for the illuminant (number 9 from Parkkinen's set
of spectra) and surface patch (Munsell patch 875) spectra for the 'no frlter'
case when there is either a single patch or multiple patches in the scene.

of 29 parameters. On the other hand, in the one surface patch scenario, there are

only 8 + 5 = 13 scene parameters. The only information available from the image of

the scene is an RGB value for each patch. For the three patches case, there are 9

measurements, while for the one patch case, there are 3 measurements. Brainard and

Freeman mention in [7] that the inverse problem formulated in Equation 2.3 is difficult
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FIGURE 4.3. The estimated and actual spectra of a surface patch (Munsell
patch 875) for the 'no filter' case: (a) one patch in the scene, (b) multiple
patches in the scene.

because it is underdetermined and nonlinear. An inverse problem is underdetermined

if there are more scene parameters than there are degrees of freedom in the data. This

can be observed in our case in both the multiple patch case where there are 29 scene

parameters versus 9 degrees of freedom in the data, on one hand, and in the single

patch case where there are 13 scene parameters versus 3 degrees of freedom in the

data, on the other hand. Having more scene parameters p'oses a harder problem for

the optimization to solve and for us ta choose an initial value that will not make it get

trapped in local minima. Trying multiple initial values helps but does not solve the

problem completely because we cannot try the whole space of starting points. Since

multiple objects are what we see in everyday life, we focus on this scenario in the
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FIGURE 4.4. The estimated and actual spectra of the illuminant (number
9 from Parkkinen's set of spectra) for the binary filter case: (a) one patch
in the scene, (b) multiple patches in the scene.

sections yet to follow. We try to improve the performance of Brainard and Freeman's

algorithm by examining what happens upon the introduction of the different types

of filters and moving the camera, Le. the notion of active vision.

Case Illuminant Surface Patch 1

Single Patch 0.0666 0.1910 1
1

Multiple Patches 0.0895 0.1887 1

TABLE 4.2. RMS error for the illuminant (number 9 from Parkkinen's set of
spectra) and surface patch (Munsell patch 875) spectra for the binary case
when there is either a single patch or multiple patches in the scene.
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FIGURE 4.5. The estimated and actual spectra of a surface patch (Munsell
patch 875) for the binary filter case: (a) one patch in the scene, (b) multiple
patches in the scene.

4.2.2. The Different Sensors: A Comparison. Experiments with several

surface patches in the scene were performed. The resulting estimates for the model

and the actual spectra for one surface patch in the scene as weIl as the spectra for the

light source can be found in Figures 4.6 and 4.7 respectively. In each case, the figures

illustrate the spectra for the two different types of optical filters as compared ta the

case with no filter. The results indicate that there is considerable improvement with

the introduction of the multi-sensor method. In fact, the more sensors introduced,

the better the estimates. This can also be seen by examining the RMS errors depicted

in Table 4.3.
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Case No Filter Binary Filter Gaussian Filter
Illuminant 0.1007 0.0867 0.0634

Surface 0.2885 0.2232 0.1584

TABLE 4.3. RMS error for the illuminant and surface patch spectra for the
'no filter', binary filter and Gaussian filter cases when there are multiple
surface patches in the scene.

4.2.3. Moving Camera. Another type of simulation which is also described

in Section 3.1.2.2 is the "moving camera" case. There are three surface patches in the

scene with two types of sensors, that is a binary filter on the lens having a dear part

and a tinted-yellow part. Then the camera is moved: one move and then two moves.

With each movement, new measurements for each surface patch are obtained, and

thus more information is gathered about the scene. This gives a tendency to improve

the results. Figures 4.8 and 4.9 show the model and the actual spectra for both the

light source as well as one of the surface patches of the scene respectively. The RMS

errors are depicted in Table 4.4. For comparison purposes the 'no fllter' case is shown

as weIl.

Case Illuminant Surface Patch 400
No Filter 0.1886 0.1310

Binary Filter, No Motion 0.1715 0.1100
Binary Filter, 1 Move 0.0641 0.0742
Binary Filter, 2 Moves 0.0459 0.0519

TABLE 4.4. RMS erraI' for the illuminant (number 30 from Parkkinen's set
of spectra) and surface patch spectra (MunseH patch 400) when there are
multiple surface patches in the scene for the 'no filter', and binary filter case
when the camera is: not moved, moved once, and then moved twice.

short, after observing the RMS errors in Table 4.4, we might say that the

improvement is not much and that obtained from the Gaussian filter (see Table 4.3)

is better. However, here weonly considered moving the camera twice for illustration
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4.3 SUMMARY

purposes. Rad we moved the camera multiple times, we would have obtained new

information with each new movement and thus improved on the results and on the

RMS error. There is also the problem that we might sometimes improve the estimate

of one surface patch, on one hand, but not get a good estimate of another, on the

other hand, in this case and in the case described in Section 4.2.1.

4.3. Summary

In order to get a better idea of the performance of the binary filter case and the

"moving camera" case, we compute an average RMS error of the model estimates of

the illuminant and surface patch compared to the measured spectra. Ten scenes of

three matte Munsell color patches [2] each were constructed. Munsell patch 400 was in

aH scenes while the others were chosen at random. The scenes were illuminated with

one light source chosen at random from Parkkinen's set of 37 daylight and skylight

spectra [35]. Then the colors of the Munsell patch (400) and the light source were

estimated in the 'no filter' case and compared to the binary filter case: static camera,

camera moved once, and camera moved twice. Table 4.5 shows the average RMS

errors obtained in each case.

Case Illuminant Surface Patch 400
No Filter 0.2386 i 0.1310

Binary Filter, No Motion 0.1392 0.1059
Binary Filter, 1 Move 0.0982 0.0682
Binary Filter, 2 Moves 0.0839 0.0552

TABLE 4.5. Average RMS error for Munsell Patch 400 and the illuminant
spectra when there are multiple patches in the scene for the 'no filter' case
and the binary flUer case when the camera is: not moved, moved once, and
moved twîce.
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CHAPTER 5

Experiments and Analysis

The sequential multiple sensor model introduced in this thesis (Chapter 3) is an

extension to the Brainard-Freeman model [7] described in Section 2.2. In arder ta

make these two models more plausible, which would in turn help in making our

model clearer, some experiments were carried out on real data in order ta test these

hypotheses. These experiments were similar ta the simulations, except for the changes

that were made ta the components of the models in order to make them compatible

with the real world. The experiments are detailed in the following sections. In terms

of the simulations described in Chapter 4, we simulate the 'no filter' case and the

binary filter case, in particular, the static camera case.

5.1. The Experimental Setup

The main components of the experiment are the light source, the glossy Munsell

color patches [1], the yellow filter, and the camera. The experiment was done in a

clark room at night to ensure that the only illumination was that coming from our

light source. The only exception to that was the computer monitor, which was turned

away from the setup as much as possible.



5.2 THE ALGORITHM

The MunseU color patches were chosen at random from the Munsell Book of

Color, Glossy Finish Collection, which contains 1600 patches [1]. These are described

in detail in Appendix A.

The yellow filter was a Kodak Wratten gelatin filter, which was placed on the

surface patches, in such a way as to coyer haU of the scene. The spectral sensitivities

function of the filter in the visible wavelength range (435 nm - 705 nm), which was

used in the experiments, was provided with the filter.

The camera with which the images were taken was a Panasonic camera, mounted

on a tripod. It was "looking" down at the scene forming approximately a 90° angle

with the platform on which the Munsell patches were placed.

The light source was a General Electric (GE) 40-Watts tungsten bulb screwed into

a desk lamp. Since the color patches were glossy, they would only exhibit appreciable

specular refiectance as the incident light angle with the surface normal to the platform,

on which the surface patches were placed, approaches 90° [25]. However, that is

unpractical because then the light source would be along the platform. Therefore, the

light source was placed such that the incident light was at an angle of approximately

45° from the surface normal of the platform.

5.2. The Algorithm

Going back to Equation 2.3, the response recorded at a location x of an array of

p sensors is given by:

k = 1,2, ... ,p, (5.1)

where E(>") is the spectral power distribution of the ambient light in the scene, and

SX(>..) is the surface spectral refiectance. In the simulations case, noise was added to
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5.2 THE ALGORITHM

the RGB measurements in order to have a reasonable simulation of the real experi­

ments. Therefore, in this case no noise was added. In the experiment, the sensor is

the camera, as opposed to Chapter 4, where the sensor was the eye. Therefore, the

sensor spectral sensitivity curves, Rk ()\) , are those of the camera. The manufacturer

(Panasonic Company) provided us with the spectral response curves ofthe color filter.

These responses were in CMYG (Cyan, Magenta, Yellow, Green) scale. Therefore,

the coordinates of sorne points on each curve were obtained by hand and then the rest

of the curves were interpolated using the 'spline' function in Matlab [10], to get the

functions over the visible wavelength range and at 5nm intervals. Figure 5.1 shows

the CMY (or CMYG) spectral responses of the camera.
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FIGURE 5.1. The camera colm filter spectral responses in CMY scale.

Sorne cameras come with IR (InfraRed) cutoff filters. We did not know whether

this was the case with our camera. Therefore, we determined the presence or absence
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5.2 THE ALGORlTHM

of the IR filter with the following simple experiment. In a dark room, the button of

a television remote control was pressed in front of the camera. Since the IR beam

coming out of the remote control did not show up in the image, it was confirmed

that the camera has an IR cutoff filter. The IR cutoff filter curve was obtained from

the camera manufacturer. In a way similar to the interpolation of the CMY curve,

the coordinates of sorne points on the curve were obtained by hand, and then the

whole curve was obtained by interpolation using the 'spline' function in Matlab [10].

Figure 5.2 shows the spectral response of the filter that was multiplied by the response

obtained from Equation 5.1. It can be noticed from the figure that the curve goes

to zero at very high wavelengths, that is towards the infrared color. This makes

sensitivities at those wavelengths go to zero.
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5.2 THE ALGORITHM

The whole spectral sensitivities curve over the desired range of wavelengths for

the yellow filter is obtained in a similar way to that used to obtain the CMY one.

As for the light source, a regular tungsten halogen bulb was used. The spectrum

for the illuminant was obtained from a GE set of Spectral Power Distribution (SPD)

curves. These curves provide a visual profile of the characteristics of a light source,

in other words, the measurement. The SPD curve used was the one corresponding to

incandescent lamps at 2800K (Kelvin). It was obtained in a way similar to that used

to get the camera color filter and IR filter responses and it is shown in Figure 5.3.
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FIGURE 5.3. The tungsten light source measurement.

As for the Bayesian formulation, its components were computed in a similar

method to that described in Section 4.1.

A few glossy Munsell color patches [1] were used in groups or individually. The

MunseH patches were placed on a black platform, which would absorb aH the light
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5.3 EXPERIMENTAL RESULTS

and not refiect any off the surface. This would minimize the tendency of interference

of light with the colors of the surface patches. Two scenarios were considered: one

in which there was a single patch in the scene and one in which there were multiple

patches in the scene. Both types of scenes were illuminated with our light source,

which was described above.

5.3. Experimental Results

The correspondence between the labels on the patches and Orava's labels [33] for

the measurements of the 1600 glossy Munsell color chips [1] is explained in Appen­

dix A. The labels for the Munsell patches used in the experiments are also tabulated

in the appendix as well as Orava's corresponding labels. Two scenarios are considered

in this section: one in which there is a single patch in the scene and one in which there

are three patches in the scene, illuminated with our light source. In each scenario,

two cases were tested, which were also simulated in Chapter 4: the 'no fiUer' case, or

equivalently, the Brainard and Freeman case and the binary fiUer case.

5.3.1. A Single Patch. The measurement and model spectra for surface

patches for which images were taken individually are plotted in Figures 5.4, 5.5, 5.6,

and 5.7 showing the results for each of the 'no filter' and the binary fiUer cases, and

indicating the colors below each figure. The resuUs show considerable improvement

in the estimate of the surface color with the introduction of the filter into the scene.

This can be seen by examining the individual as well as the average RMS errors for

the surface patch estimates in bath the no fiUer and the binary filter cases, which are

given in Table 5.l.

As for the tungsten light source, the average RMS error of its estimate for the 'no

flUer' case is 0.1104, while that for the binary filter case is 0.2423. In other words,

the light source estimate does not improve with the introduction of the filter. For

55



5.3 EXPERlMENTAL RESULTS

Wavelength nm

- actual spectrum
- . model spectrum

550 600 650 700

Wavelength nm

1 1
\ - actual spectrum

0.9 \ - . model spectrum
0.9

\

0.8 \
0.8

\

~0.7 \
~0.7

~ \ :;::>
,jjc: \ c

~ 0.6 ~ 0.6
"ê \

~"0 \
~ 0.5

\ ~ 0.5
en (/)
"0 \ "0la 0.4 ~ 0.4
=aï \ =aï
E \ E
~ 0.3

\ ~ 0.3

\
0.2 \ 0.2

\
0.1 \ 0.1

"-
0 0

450 500 550 600 650 700 450 500

(a) green: no filter (b) green: with binary fllter

FIGURE 5.4. The estimated and actual spectra of a green MunseH patch
when there is a single patch in the scene in the cases of (a) 'no filter', (b)
binary flUer.

Patch Color No Filter Binary Filter
Green 0.1279 0.0366

1 Red 0.2416 0.0886
Blue 0.1864 0.1024

Purple 0.2442 0.1372
AVERAGE 0.2000 0.0912

TABLE 5.1. RMS error for each of the MunseH surface patch spectra when
there is a single patch in the scene for the 'no flUer' and the binary flUer
cases.

each case, a model having an RMS error that is close to the average one is plotted in

Figure 5.8.
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FIGURE 5.5. The estimated and actual spectra of a red Munsell patch
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5.3.2. Multiple Patches. In this section, the scenario for which there are

three Munsell surface patches in the scene, illuminated with our tungsten light source,

is examined. The measurement and model spectra for the surface patches are plotted

and the RMS errors are depicted in tables as weIl.

We shaH start with a scene which had a green, bIne, and red patch. The green

patch was partially covered with the filter, the bIne patch was totaUy covered, and the

red patch was not covered at aU; that is, it was nnder the dear part. The resnlts for

this case are shown in Figure 5.9 with the color of the surface patch indicated below

each figure. The corresponding RMS errors between the measurement and model

spectra are given in Table 5.2.
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FIGURE 5.6. The estimated and actual spectra of a blue Munsell patch
when there is a single patch in the scene in the cases of (a) 'no filter', (b)
binary filter.

Patch Color Green Blue Red
No FUter 0.1271 0.2242 0.1715

Binary Filter 0.0936 0.1735 0.1100

TABLE 5.2. RMS error for each ofthe Munsell surface patch spectra (green,
blue, red) when there are multiple patches in the scene for the 'no fllter' and
the binary filter cases.

Next, images of the purple, green, and yellow patches are taken together. The

purple patch was partially covered with a filter, the green patch was totally covered,

while the yellow patch was not covered at aH; that is, it was under the clear part.

The results for this case are shown in Figure 5.10 with the color of the surface patch

indicated below each figure. The corresponding RMS errors between the measurement
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FIGURE 5.7. The estimated and actual spectra of a purple MunseU patch
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and model spectra are given in Table 5.3.

Patch Color 1 Purple Green Yellow
No FUter 0.2055 0.1263 0.1566

Binary Filter 0.3214 0.0916 0.1480

TABLE 5.3. RMS error for each of the Munsell surface patch spectra (purple,
green, yellow) when there are multiple patches in the scene for the 'no filter'
and the binary filter cases.

Finally, images of the purpIe, bIue, and red patches are taken together. The purple

patch was partially covered with a fiiter, the blue patch was totally covered, whUe the

red patch was not covered at aH; that is, it was under the clear part. The results for
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FIGURE 5.8. The estimated and actual spectra of the illuminant when
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this case are shown in Figure 5.11 with the color of the surface patch indicated below

each figure. The corresponding RM8 errors between the measurement and model

spectra are given in Table 5.4.

Patch Color ! Purple Blue 1 Red
No Filter 0.2127 0.2281 0.1609

i Binary Filter 0.2917 0.1456 0.0863

TABLE 5.4. RMS error for each of the MunseH surface patch spectra (purple,
blue, red) when there are multiple patches in the scene for the 'no flUer' and
the binary filter cases.
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FIGURE 5.9. The estimated and actual spectra of the Munsell patches
(green, blue, red) when there are multiple patches in the scene in the cases
of (a)-(c) 'no filter', (d)-(f) binary filter.

Upon examining the RMS errors which are depicted in Tables 5.2, 5.3, and 5.4,

we can notice considerable improvement in the surface patch spectra estimates with

the introduction of the binary filter into the scene, with a few exceptions. As for the

tungsten light source, the average RMS error between the model and the measurement
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for the 'no fllter' case of aU three combinations considered above IS 0.1477. The

estimated and actual spectra for the tungsten light source in this case are plotted in

Figure 5.12 when there are three patches in the scene: purple, bIue, and red. However,
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FIGURE 5.11. The estimated and actual spectra of the Munsell patches
(purple, blue, red) when there are multiple patches in the scene in the cases
of (a)-(c) 'no filter', (d)-(f) binary filter.

the introduction of the fiUer did not irnprove upon the estirnate of the light source

spedrum. A possible explanation for this is that the optimization routine might be

getting trapped in a local minimum. Furthermore, the initial value might be one that
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leads it to such a minimum. However, as mentioned previously, it is unpractical to

try infinitely many starting points. Another source of error might be the fact that the

set of basis functions used to approximate the tungsten light source spectrum were

those of Parkkinen's set of daylight and skylight spectra [35] and not an indoors set

of light spectra.
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FIGURE 5.12. The estimated and actual spectra of the illuminant when
there are multiple patches in the scene in the 'no fllter' case.

In closing, we can say that the real experiments produce similar results to the

simulations in the sense that the RMS errors are in the same range for the 'no filter'

case and the binary case, in particular, the binary filter case. The introduction of the

filter into the scene has improved the results considerably in both the single patch

and multiple patch cases, especially for the surface patch spectra estimates. However,

no improvement was observed for the light source estimates. Possible reasons were

mentioned above. A few points are worth mentioning. First, trying random multiple

initial values for the optimization did not help because the optimization algorithm

converged at nearby points every time. There are many factors that influence the

results in the real world such as noise (see Section 4.1), which is very difficult to control
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or eliminate. Another experimental error which arises here, which does not oecur in

the simulations (Chapter 4), is obtaining the coordinates of the points of the camera

response (the color filter, for example), which is done by hand, and then interpolating

the whole function. This would give a function which i8 close to the real function

but not the exact one itself. Moreover, there are interrefiections between surfaces in

the real world, and we have to expect surface patches to affect each others' colors.

On other hand, the spectral sensitivities of the glossy Munsell patches were measured

each independently, that is not taking into account interference of colors from other

patches. This could be a source of difference between the measurement and the model

spectra and would thus produce a larger RMS erroI. Finally, our model assumes

that there is no interrefiection between surfaces, and that the spectral refiectances of

the surface and lighting vectors are sufficient statistics for the measurement of that

surface, which is not the case in the real world.
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CHAPTER 6

Conclusions and Future "Work

Color constancy, which is the perception· of a constant color across variations in

illumination, has been the topic of research in this thesis. We have proposed an active

Bayesian strategy that is an extension to the Brainard-Freeman Bayesian approach

to color constancy [7]. Brainard and Freeman used a Bayesian technique to regularize

[40] the problem of computing the values of the illuminant and surface refiectance

parameters. This technique uses the bilinear model of Maloney and Wandell [30] to

provide a parametrization of the illuminant and surface spectra.

Our model enhances Brainard and Freeman's model obtaining insight from the

characteristics of human vision, and the human eye, in particular. The human retina

is non-homogeneous, and the spatial distribution of the photoreceptors on the retina

is non-uniform. Also the spectral absorption of the lens and macula varies across the

retina. In our approach, measurements are acquired sequentiaUy from each sensor of

a set of independent sensors, similar to when a person moves his/her gaze across a

surface in the scene. Two cases were modeled in this thesis: one in which there are

only two different types of sensors (binary filter), and one in which there is a smooth

variation in spectral sensitivity curves across the sensor array (Gaussian filter). The

Gaussian filter case is an approximate model of the eccentric drop-off in the thickness
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of the macular covering, as weIl as the eccentric drop-off in the path length of the

light that passes through the lens. The binary case was extended to moving the

camera across the scene. This is acquired from the notion of active vision that is a

very important characteristic of human vision.

The simulations in Chapter 4 indicate that there is an improvement in the light

source estimate with the introduction of more surface patches in the scene. Further­

more, there is considerable improvement with the introduction of the multi-sensor

method compared to the 'no filter' method, which is that of Brainard and Freeman.

In fact, the more sensors introduced, the better the estimates of the light source and

surface patches, but the more the time it would take to get to the solution or for the

optimization to converge. Another result shown in Chapter 4 is that of the "moving

camera": the more the number of moves of the camera, the better the estimates. In

fact, if the camera were moved more than twice, which was one of the cases simulated

in this thesis, we could have obtained better estimates of the light source and surface

patches.

In Chapter 5, the experiment was done in our laboratory on glossy Munsell

patches [1]. The results showed sorne improvement in the surface patch spectra esti­

mates upon the introduction of the binary fiUer. Future work would involve moving

the camera and introducing the Gaussian filter case. The binary filter case, particu­

lady the moving camera case, can be modeled· by placing the yellow filter on half of

the scene and then moving it around such that different patches are under different

parts of the filter each time and such that there is a new set of data gathered with

every new movement. The Gaussian filter case can be modeled by placing a drop of

yeHow food coloring on the middle of the lens, which would be concentrated at the

center and would fade away towards the peripheries.
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In conclusion, Finlayson in [18] states that for scenes containing a small number

of surfaces (1, 2, 3, or 4) many illuminants might be equally likely according to the

Bayesian probability formulation (17]. This is what we observe in the light source

estimatei that is as we introduce more surface patches into the scene, no improve­

ment is observed. Furthermore, the results can be explained by the fact that sorne

assumptions have been violated. The most important assumption is that we assumed

that there is no interrefiection between surfaces; and therefore, the measurements are

assumed to be conditionally statistically independent (Chapter 3). However, this is

not always true because we cannot say that surfaces do not refiect light onto other

surfaces and affect each others' colors. Tominaga and Wanden state in [41] that the

visual information we use to perceive the color of an object is derived from the light

refiected from the object itself and the light refiected from nearby objects. This may

be the reason behind getting unsatisfactory estimates for a surface patch in the scene

when there are many surface patches. However, if we were to filter out the effect

of the refiectances of the neighboring surfaces, we will not be taking into account

a multiple surface patch scene anymore. Another challenging problem is finding a

reasonable starting point for the optimization problem, which will not make it get

trapped in local minima. These remain interesting questions for the future.
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APPENDIX A

Munsell Patches

The purpose of this appendix is ta introduce the Munsell patches and their specifica­

tions. The first section of this appendix describes the notation system of the Munsell

color patches and the way they are grouped in the Munsell Book of Color. There are

two kinds of color patches: matte and glossy. The matte ones were used in the sim­

ulations (Chapter 4) and the glossy ones were used in the experiments (Chapter 5).

The second section of this appendix describes the correspondence between the labels

of the 1600 glossy Munsell patches themselves and the labels given by Orava who

measured their spectra.

A.l. The Notation System

The system of calaIS, developed by Munsell and used in the Munsell Book of

Color [1), identifies color in terms of three attributes: hue, value, and chroma [9].

The hue (H) is the first characteristic of a color that the eye detects and it 18

scaled from one ta ten. There are ten major hues, of which five are principal and five

are intermediate. These hues are positioned ten steps apart within this scale. The

names of the major ones are: Red (R), Yellow-Red (YR), Yellow (Y), Green-Yellow
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(GY), Green (G), Blue-Green (BG), Blue (B), Purple-Blue (PB), Purple (P), and

Red-Purple (RP).

The value (V) notation indicates how light or how dark a color is in relation to a

natural gray scale. The value scale extends from absolute black, which is symbolized

by zero, to absolute white, which is symbolized by ten. For example, yellow is usually

a light color, so it is doser to white than to black. Figure A.l is a simple diagram of

the value scale.

10 White

light 9

values
8

7

L
6

middle
values 5

4

3

dark 2
values

L 1

0 Black

FIGURE A.l. The value scale.

The chroma (C) notation is a measure of the degree of color strength or intensity.

It indicates how much of a green hue i8 different from a neutral gray of the same

value. That is, two colors may be the same in hue (for example, both green) and the

same in value (that i8 neither is darker or lighter than the other), and yet be different
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in color strength. One may be strong green and the other weak, grayish green. This

differenee is in the dimension of the chroma. Chromas close to neutral are known as

weak chromas, those close to maximum strength are known as strong chromas, and

those between the weak and the strong are known as moderate chromas. The scale

of chromas extends from 0 to 10, 12, 14 or farther. In the case of the glossy Munsell

patches used in the experiments in this thesis (Chapter 5), the scale is 0 to 16.

To sum up, hue (H) is the name of a color, value (V) is the amount of light in

a color, and chroma (C) is the degree of strength in a coloL Therefore, a Munsell

patch or color chip has a label of the following form: HV/ C.

A.2. Correspondence: Munsell Label to Orava's Label

The spectral sensitivities of the 1600 glossy Munsell color patches were obtained

from Joni Orava's website [33]. He measured the refiectanee spectra of the color

chips with a Perkin-Elmer Lambda 18 UV/VI spectrophotometer over a wavelength

interval of 380 nm to 780 nm and a resolution of 1 nm. The correspondenee between

the Munsell patch labels (explained in Section A.1) and Orava's labels i8 explained

below.

Sinee it is easier to understand the correspondence by example, we shaH explain

it with the following one. The label on a red Munsell patch (used in the experiments

in Chapter 5) from the Munsell book of color is 5R 5/12. The first three letters in his

labels represent the hue. Sinee B = 5 and RR = Red (it is R in the label), the first

three letters in Orava's representation would be BRR. The value is represented with

the fourth and fifth letter. Since 5 corresponds to 50, then the label, putting the hue

and value together, would become BRR50. Finally, the chroma lS represented with

the sixth and seventh letter. Sinee 12 corresponds to 12, putting aU the components

of the label together, the label of the red MunseH patch having a label 5R 5/12
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would be represented in Orava's representation by BRR5012. Having the label of

the patch, the number of the patch could be obtained from Orava's list and hence its

measurement from the Matlab file provided on his website [33]. Below are Orava's

lists of the corresponding indexing between his labels and the Munsell patches labels.

The values to the left of the "=" operator are his given indices of the labels and the

values to the right of the "="operator are the Munsell patches indices of the labels.

MUNSELL HUE (First letter)

A = 2.5

B=5

C=7.5

D=lO

for supplementary colors:

E = 1.25

F = 3.75

G = 6.25

H = 8.75

Second and third letter:

RR= Red

YR = Yellow-Red

YY = Yellow
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GY = Green - Yellow

GG = Green

BG = Blue-Green

BB = Blue

PB = Purple-Blue

PP = Purple

RP = Red - Purple

MUNSELL VALUE (Fourth and Fifth letter)

10 = 1

20 = 2

30 = 3

40 = 4

50 = 5

60 = 6

70 = 7

80 = 8

85 = 8.5

90 = 9
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MUNSELL CHROMA (Sixth and Seventh letter)

01 = 1

02 = 2

04 = 4

06 = 6

08 = 8

10 = 10

12 = 12

14 = 14

16 = 16

After explaining Orava's labelling system and giving his lists of corresponding

indexing between his labels and the Munsell patch labels, we list the colors of the

glossy Munsell patches used in our experiments, their labels, and Orava's correspond­

ing labels in Table A.1.
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Patch Color Munsell Label Orava's Label
Green 2.5G 6/8 AGG6008
Red 5R 5/12 BRR5012

Purple 2.5P 5/8 APB6008
Purple-Blue 2.5PB 6/8 APP5008

Yellow 5Y 8/10 BYY8010

TABLE A.l. Table of correspondence between the Munsell patch labels and
Orava's labels for the glossy MunseU patches used in our experiments.
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