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Abstract

When dealing with pattern recognition problems one en-
counters different types of a-priori knowledge. It is impor-
tant to incorporate such knowledge into the classification
method at hand. A very common type of a-priori knowl-
edge is transformation invariance of the input data, e.g. ge-
ometric transformations of image-data like shifts, scaling
etc. Distance based classification methods can make use of
this by a modified distance measure called tangent distance
[13, 14]. We introduce a new class of kernels for support
vector machines which incorporate tangent distance and
therefore are applicable in cases where such transforma-
tion invariances are known. We report experimental results
which show that the performance of our method is compa-
rable to other state-of-the-art methods, while problems of
existing ones are avoided.

1. Introduction

An important factor for the choice of a classification
method for a given problem is the available a-priori knowl-
edge. During the last few years support vector machines
(SVM) [15] have shown to be widely applicable and suc-
cessful particular in cases where a-priori knowledge con-
sists of labeled learning data.

If more knowledge is available, it is reasonable to incor-
porate and model this knowledge within the classification
algorithm and to expect either to obtain better classifica-
tion results or to require less training data. Therefore, much
active research is dealing with adapting the general SVM

methodology to cases where additional a-priori knowledge
is available. This is the case e.g. in optical character recog-
nition (OCR). Here it is known that the data is subject to e.g.
affine transformations and this knowledge can be exploited
to improve classification accuracy.

We want to focus on the very common case where vari-
ability of the data can be modeled by transformations which
leave the class membership unchanged.

If these transformations can be modeled by mathe-
matical groups of transformations one can incorporate
this knowledge independently of the classifier during the
feature-extraction stage by group-integration, normalization
etc. [4]. This leads to invariant features, on which any clas-
sification algorithm can be applied.

A possibility particularly designed to kernel methods, is
to build invariant kernels by integrating systems of differen-
tial equations [3].

Such transformations however often cannot be described
by global transformation groups or this is not desired. In
case of OCR, for instance, small rotations of a letter are
accepted, but large rotations change class memberships like
Z → N, M → W, 6 → 9 etc.

Several methods are known to incorporate such local
transformation knowledge in special classifiers. In the next
two sections we review a method for distance-based clas-
sifiers called tangent distance and some existing methods
for SVM. Then we are able to combine SVM with tangent
distance, which results in a new class of SVM-kernels in
Section 4. This is a new method of dealing with invariances
in SVM, which circumvents certain problems of existing
approaches. Experimental results in Section 5 confirm the
applicability of our approach.
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Figure 1. Notation for p ∈ IR1 and x ∈ IR2.

2. Tangent distance

We will formalize the a-priori-knowledge about local in-
variances as a differentiable transformation t(x,p), which
maps a vector x ∈ IRd to IRd depending on some param-
eter vector p = (p1, . . . , pl)T ∈ IRl. We assume that
t(x,0) = x and that t does not change the class member-
ship of x for small pi. This induces a manifold Mx :={
t(x,p)|p ∈ IRl

} ⊂ IRd of transformed patterns.
For computational reasons we approximate the manifold

Mx by its tangent hyperplane at point x

Hx :=

{
x +

l∑
i=1

piti

∣∣∣∣∣ pi ∈ IR

}
.

Here ti := ∂
∂pi

t(x,p)
∣∣∣
p=0

. denote the tangents that span

the plane Hx, cf. Figure 1.
An approach for dealing with these local invariances in

distance-based classifiers is the use of tangent distance (TD)
introduced in [13, 14]. The idea behind this method is that
an adequate dissimilarity measure for two feature vectors
x and x′ is the distance of their manifolds Mx and Mx′

or the corresponding linear approximations Hx and Hx′ ,
respectively. This is exactly the definition of the so called
two sided TD

d2S(x,x′) := min
p,p′

∥∥∥∥∥x +
l∑

i=1

piti − x′ −
l∑

i=1

p′it
′
i

∥∥∥∥∥ .

Impressing results on the USPS and NIST handwritten digit
datasets have been presented. A computationally cheaper
approximation is the one sided TD

d1S(x,x′) := min
p

∥∥∥∥∥x +
l∑

i=1

piti − x′
∥∥∥∥∥ .

The best recognition results on the USPS dataset have
been achieved recently by application of one sided TD in a
statistical pattern recognition framework [7, 8].

3. Invariance in SVM

Based on learning data {(xi, yi)}N
i=1 ⊂ IRd ×{−1,+1}

of feature vectors xi and their labels yi, a SVM implements
a binary decision function f(x) := sgn(g(x)) with g(x) =∑N

i=1 yiαiK(x,xi)+b, where K is a positive definite (p.d.)
kernel and b ∈ IR is an offset value. Training of the SVM
consists of determining the values αi such that

W (α) =
N∑

i=1

αi − 1
2

N∑
i,j=1

αiαjyiyjK(xi,xj)

is maximized under the constraints
∑N

i=1 αiyi = 0 and 0 ≤
αi ≤ C for i = 1, ..., N . Here C is a regularizing parameter
and α denotes the vector with components αi. The offset
value b is calculated based on α and the training set.

Some striking properties of the resulting representation
g(x) are: Firstly, most αi turn out to be zero, such that only
xi with αi �= 0 contribute to the sum. These vectors are
called support vectors (SV). Secondly, it can be interpreted
as a simple linear function in a high-dimensional space in-
duced by the kernel K. For further details and theoretical
foundation refer to [15].

In [5] an extensive survey of current techniques for com-
bining the information of transformation invariances with
SV-learning is presented. We give some basic ideas here,
for details refer to [5] and the references therein.

The virtual support vector (VSV) method is based on the
idea of generating virtual training data by transformations
t(xi,p) of training points for small parameters p, and train-
ing on this extended set. As the size of this extended set is a
multiple of the original one, training is computationally de-
manding. To circumvent this, the VSV-method is a two step
method: first an ordinary SVM-training is performed, then
only the set of resulting SVs is extended by small transfor-
mations, finally a second SVM-training is performed on this
set.

Further simplification of computation is obtained by us-
ing the linear approximation Hx instead of Mx. By doing
so the necessary transformations of a SV x reduce to adding
multiples of the tangents ti.

The advantages of the VSV method are the applicability
to arbitrary standard kernels and a clear increase of recogni-
tion performance. Problems are the two training stages and
an increased number of SV after the second stage, which
lead to longer training and classification times [12].

Other methods like invariant hyperplanes try to modify
the kernel function in a very simple way, such that it glob-
ally fits all local invariant directions best. This turns out
to be equivalent to a prewhitening of the data along these
directions which fit best to all local invariance directions
simultaneously. Obviously, this method does not respect lo-
cal invariance in each training point, furthermore it appears
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to be computationally very hard in the nonlinear case. The
advantage is the use of the original SVM-training procedure
after prewhitening the training data.

The so called kernel jittering method is also based on
the idea of small transformations of the training points. In-
stead of performing these shifts before training, they are
performed during kernel-evaluation.

4. Tangent distance kernels

In constructing kernels which incorporate TD we face
some problems concerning interpretation of the resulting
kernels as scalar products or equivalently their positive def-
initeness.

A basic property of TD-measures is that they are not
metrics as the triangle inequality is invalid, which can be
shown easily by counterexamples. This implies that TD-
measures cannot be induced norms of any scalar product in
any Hilbert space and discards several further possible rela-
tions to any scalar product.

A second problem is that some TD variants, e.g. d1S , are
not symmetric. This problem, however, is solvable by defin-
ing symmetric modifications of TD, which have the same
computational efficiency as d1S . We define the square of
the mean TD to be the mean of the two squared one sided
distances:

dMN (x,x′) :=

√
1
2

(d2
1S(x,x′) + d2

1S(x′,x)).

Of course a simple mean of the distances would also be a
possible modification. During calculation we rather deal
with squared distances than with real distances, therefore
this definition is more practical.

We further introduce the midpoint TD to be the sum of
the two one sided distances to the midpoint x̄ := 1

2 (x+x′):

dMP (x,x′) := d1S(x̄,x) + d1S(x̄,x′).

Other TD-measures are possible, e.g. combinations of TD-
measures with the Euclidean distance in order to prevent the
situation (in high dimensional spaces very unlikely), that
points which are very distant have accidentally small TD-
distance, cf. [14].

We now are able to define our TD-kernels. Given
an arbitrary distance-based kernel, i.e. K(x,x′) :=
k(‖x − x′‖) we simply replace the Euclidean distance by
any TD-measure and obtain the corresponding TD-kernels
K1S(x,x′) := k(d1S(x,x′)) and analogously K2S , KMN

and KMP .
We denote two particular distance based kernels: the ra-

dial basis function kernel KRBF (x,x′) := e−γ‖x−x′‖2

and the negative distance kernel KND(x,x′) :=
−‖x − x′‖γ . The latter one is not p.d. but for γ ∈ (0, 2]

d′d′

d2S :=d

d2
MN := 1

2
(d2+d′2)dMP := d+d′

d1S :=d

d
d

dd

x′

x′

x′

x′
x̄

x

x

x

x

Figure 2. Illustration of TD-measures.

still conditional positive definite (c.p.d.), which is com-
pletely sufficient for application in SVM, cf. [2, 10].

In Figure 2 we illustrate the four TD-variants.
At this point we can already state some properties of

these TD-kernels. They share the obvious disadvantages
with the kernel-jittering method compared to VSV. First
there is the non-symmetry of the kernels which use one
sided transformations and the problem of not being c.p.d.
This is a serious problem from a theoretical point of view,
as the global optimum of the SVM-solution cannot be guar-
anteed anymore. Nevertheless such kernels often prove to
be applicable, e.g. Gaussian dynamic time warping kernel
[1], kernel-jittering [5], or sigmoid-kernel [11], which is not
p.d. for large ranges of its parameters. Similar to kernel-
jittering, our approach is only applicable to distance based
kernels. A disadvantage from the computational point of
view is the necessity of calculating the tangents and trans-
formations during training and classification which results
in a slowdown proportional to l2, where l denotes the num-
ber of tangent directions.

Advantages of our approach are the following: The set of
SVs remains small, we only require one training stage, no
generation of virtual data or prewhitening of the data is nec-
essary. Furthermore our approach effectively respects local
invariances instead of a global integration of these local di-
rections as in the invariant hyperplane approach. In contrast
to the VSV-method, we also respect these local invariances
during classification. In contrast to VSV or kernel-jittering
approach, we do not have to decide about the fixed values
for the pi.

5. Experiments

We tested our approach on the US-Postal-Service digit
dataset, as there exists a lot of reference results in the liter-
ature, in particular results from the VSV-method and TD-
approaches. Table 1 lists some of them. The data consists
of 7291 training and 2007 test images of 16× 16 greyvalue
images of handwritten digits. Some results in the literature
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Figure 3. Examples of USPS digits.
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Figure 4. Tangents ti and shifts x+ti ∈ Hx.

use a training set extended by about 2400 machine printed
digits. These are marked with *, as their error rates are not
directly comparable. Figure 3 shows some example images.

Method Error rate [%]

Human Performance [13] 2.5

Neural Net (LeNet1) [14] 4.2
SVM, no invariance [11] 4.0
SVM, VSV-method [12] 3.2

k-Nearest Neighbour [14] *5.7
k-NN + TD [14] *2.5

TD + kernel densities [7] 2.4
* := extended training set.

Table 1. Selection of USPS results.

We transformed the original USPS digits to values in
[0, 1] and scaled them to norm ≤ 1. We chose the two ker-
nels KRBF , KND and their corresponding TD-kernels for
our experiments. We used the seven tangent directions of
Simard [13]: x,y-translation, scaling, rotation, line thick-
ening and two hyperbolic transformations. Figure 4 shows
some tangents and points on the hyperplane Hx of an ex-
ample x by shifting x along these seven tangent directions.

The multiclass-problem was solved by the decision di-
rected acyclic graph (DDAG) combination of pairwise
SVM [9]. We applied no nodewise model-selection, but
simply used fixed kernel-parameter γ and factor C for all
SVM in the nodes of a DDAG. SVM-Light was used for the
nodewise optimization [6]. We performed 5 to 18 training
passes for each of the ten kernels with different parameter
sets. For each of these ten model-sequences we selected the
model with minimal test-error.

For each of the ten best SVM-DDAGs, we report detailed
statistics. In Table 2 we list the kernel-parameter γ, regular-
ization factor C, and number of parameter sets, i.e. number
of trained DDAGs, sorted by test-error rate.

Obviously the use of tangent information improves the
classification performance remarkably for both basic ker-
nel types compared to ignoring the tangent information as

Kernel Error γ C # param.
rate [%] sets

KRBF 4.6 8 10 14
KRBF

1S 4.1 20 10 11
KRBF

2S 3.8 20 10 11
KRBF

MP 3.5 20 10 9
KRBF

MN 3.4 10 10 9

KND 5.1 1.0 10 12
KND

1S 5.0 0.3 1 18
KND

MN 4.2 0.7 10 6
KND

MP 3.9 0.3 70 11
KND

2S 3.6 0.3 10 5

Table 2. USPS results with TD-kernels.

Kernel Training-time Test-time Average
[s] [s] # SVs

KRBF 199 228 175
KRBF

1S 2814 3878 267
KRBF

2S 6057 8172 190
KRBF

MP 2437 3394 232
KRBF

MN 3159 3950 133

KND 224 291 177
KND

1S 2947 4364 298
KND

MN 3737 5023 176
KND

MP 2805 4122 282
KND

2S 7873 11433 269

Table 3. Details of the models.

KRBF and KND. Comparison with Table 1 shows, that the
decrease in error rate is comparable to the decrease obtained
by using the VSV-method. The gain is not as large as in us-
ing TD instead of Euclidean distance in nearest neighbour
classification.

Among all TD-kernels, the one sided kernels seem to im-
ply the smallest gain. This might be due to the fact that they
are not symmetric, which is a basic property of ordinary
kernels.

We performed no excessive parameter-optimization and
therefore obtained slightly worse absolute values in the case
of the standard rbf-kernel than the 4.4% presented in [9].
Similar to the values mentioned there, the absolute result
cannot compare with 4.0% obtained by the nodewise opti-
mized SVM-graph in Table 1, as we did not perform node-
wise parameter-optimization, but used fixed global parame-
ters.

In Table 3 we list details of the resulting SVM-DDAGs,
i.e. training time, test time (on a standard 1 GHz-PC) and
average number of SVs per DDAG-node.

The major problem of our approach seems to consist in
the slowdown of factor ≥ 12 in both training and classi-
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fication caused by the calculations of the tangents and the
tangent distances. Quantitative comparisons to other meth-
ods are not possible, as we did not implement them and no
runtime results are available in the literature. In [12] a factor
of 2 is reported for the VSV method using two tangent di-
rections. The definitely larger slowdown factor for the case
of using all seven tangents is however not available.

Among the symmetric TD-kernels there seems to be no
preferable choice with respect to the error rate. Addition-
ally regarding the time complexity, the kernels based on the
midpoint-TD seem to be the best choice.

6. Conclusion and perspectives

We successfully demonstrated the generation of
new SVM-kernels by substituting distance-measures in
distance-based kernels. We defined modifications of TD,
which combine the advantages of existing formulations:
the symmetry of the two sided TD and the computational
ease of the one sided TD. We presented a new method for
incorporating a-priori knowledge consisting of transforma-
tion invariance into the SVM methodology, by introducing
TD-kernels. The recognition performance is comparable
to other methods, furthermore disadvantages from existing
methods are circumvented.

The presented results can definitely be refined by more
parameter sets and performing parameter-optimization for
each SVM node in the multiclass decision graph.

After our initial experiments it seems promising to per-
form further comparisons, in particular with regard to run-
times, with the VSV and kernel-jittering approach.

The experiments can be extended in various ways. First
to larger databases, e.g. the MNIST digit database, which
is also widely used in literature. Application to other ar-
eas than OCR would also be interesting in order to con-
firm the usability of our approach. Further distance based
kernels can be implemented, e.g. K(x,x′) := − log(1 +
‖x − x′‖γ), cf. [2, 10].

Our result is a confirmation that the class of applicable
kernels is not restricted to c.p.d. kernels, where applicable
means producing accurate results. Although the theoretical
property of kernels being c.p.d. is necessary for global opti-
mality statements, in practice this is not always the case. In
fact this might be seen as a general strategy for real prob-
lems: When designing suitable problem-dependent kernels,
giving up the property of (conditional) positive definite-
ness leads to increased flexibility in incorporating a-priori-
knowledge while it can preserve or even increase accuracy
or speed.
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