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Abstract

In this paper, we propose a new method to speed
up SVM decision based on the idea of mirror points.
Decisions based on multiple simple classifiers, which
are formed as a result of mirror pairs, are combined to
approximate a single SVM. A dynamic programming-
based method is used to find a suitable combination.
Experimental results show that this method can increase
classification efficiencies of SVM with comparable clas-
sification performances.

1 Introduction

The classification time of support vector machines
(SVMs) [2][6] is proportional to the number of sup-
port vectors. Many works [1][3][5] were proposed to
address on reducing its classification time by finding a
simplified classifier where the number of vectors used
in determining classification result is smaller than the
number of support vectors. More specifically, they all
focused on solving the reduced set problem [1] that will
be introduced in Section 2.2.

Unlike previous works, our idea is to use several sim-
ple classifiers -“simple” in the sense that the number
of vectors involved in determining a classification result
is small, and decisions of these classifiers are combined
to approximate an SVM. From the viewpoint of the
number of parameters needed to be optimized, using
simple classifiers has the advantage that the computa-
tion time for finding each simple classifier can be much
less than that for solving the reduced set problem. In
this paper, a kind of simple classifier is devised based
the idea of mirror points. Particularly, only two vec-
tors are required in determining a classification result
for a simple classifier based on a pair of mirror points.
In addition, such classifiers can be constructed from
training data systematically. As for how to combine a
set of chosen classifiers, it is a basically combinatorial
problem and is intractable if a brute force method is
used. In this paper, it is transformed to be an optimal-
path finding problem in a specially designed graph, and
a dynamic programming (DP)-based approach is used
for it to find a good sub-optimal solution.

2 Review

Consider a two-class classification problem. Let Ω =
{(x1, y1), (x2, y2), ..., (xn, yn)|xi ∈ Rd, yi ∈ {−1, 1}, i =
1, 2, ..., n} be a set of input-output training data pairs
where Rd space is referred to as the input space and
is denoted by Λ in the following. The SVM [2][6] first
projects the input vectors onto the feature space F by
some nonlinear function φ : Λ → F and then finds a
linear separating hyperplane Hw̃,b : w̃T x̃+ b = 0 in the
feature space where x̃, w̃ ∈ F and b ∈ R. In SVM, w̃

and b are found by solving a quadratic programming
problem, and w̃ has the following form

w̃ =
n

∑

i=1

αiyiφ(xi), (1)

where αi ≥ 0, i = 1, . . . , n. Notice that a training
vector xi with nonzero αi is called a support vector
and typically the number of support vectors is smaller
than that of training examples. The classification rule
of the SVM is

fHw̃,b
(x) = sgn(w̃T φ(xi) + b)

= sgn(

n
∑

i=1

αiyiK(x, xi) + b),
(2)

where K(x, xi) = φ(x)T φ(xi). Notice that K(., .) is
referred to as a Mercer’s kernel [6] and commonly used
Mercer’s kernels include Gaussian RBF, polynomial,
and sigmoidal functions. In the following, we will rep-
resent fHw̃,b(x) as f(x) for brevity for cases without
incurring confusion.

From (2), it can be observed the classification time is
proportional to the number of support vectors. Hence,
to speedup the SVM decision, many research works
[1][3][5] focus on solving the reduced set (RS) problem
[1], which is to find Υ∗ defined below.

Υ∗ = arg min
Υ

d(Υ, w̃), (3)

where

Υ =

l
∑

i=1

βiφ(x̂i), (4)
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d(x̃, ỹ) = ||x̃ − ỹ|| is the Euclidean distance between
two vectors x̃, ỹ in the feature space F , and l is smaller
than the number of support vectors. Then a set of
βi ∈ R, x̂i ∈ Λ, i = 1, . . . , l can be found by optimiz-
ing (3) into which (4) is incorporated. The number of
parameters in this optimization problem is l ∗ (d + 1).
While l or d is large, the computation time for solving
the optimization problem is very demanding.

Some iterative methods including the reduced set
method [1][5] and the regression method [3] have been
proposed for solving the RS problem.

3 The Proposed Method
Assume that a linear separating hyperplane Hw̃,b

in the feature space F is used as a classifier in the
following discussions with w̃ =

∑n

i=1 αiyiφ(xi) and b

being obtained in advance. Given v ∈ Λ, the distance
from its image φ(v) to a hyperplane Hw̃,b, denoted by
d(φ(v), Hw̃,b), is

d(φ(v), Hw̃,b) =
|w̃T φ(v) + b|

||w̃||
(5)

Furthermore, its mirror vector, m̃v, in the feature
space F with respect to Hw̃,b is defined as follows.

m̃v = φ(v)− 2f(v)d(φ(v), Hw̃,b)
w̃

||w̃||
(6)

Given a pair of mirror points (φ(v), m̃v), define a clas-
sification rule gφ(v),m̃v

(z) as follows

gφ(v),m̃v
(z) =

{

f(v) if d(φ(z), φ(v)) ≤ d(φ(z), m̃v),

−f(v) otherwise,.

(7)
where z ∈ Λ. Then the following property holds.

Property 1: gφ(v),m̃v
(z) = f(z) for all z ∈ Λ.

From Property 1, it is known that classification re-
sults f(z) and gφ(v),m̃v

(z) are the same for all z ∈ Λ.
This concept is shown in Figure 1. If the pre-image of
m̃v can be clearly identified, then a single pair of mirror
points, (φ(v), m̃v), can be used to construct an equiv-
alent classifier of the SVM. However, the pre-image of
m̃v may either not exist or require a complex repre-
sentation. In this subsection, let us consider the case
where m̃v is approximated by ũ. ũ is referred to as
the approximate mirror point of v. An approximate
classification rule AM ũ

φ(v)(z), which results in a linear
classifier in the feature space, is defined as follows.

AM ũ
φ(v)(z) =

{

f(v) if d(φ(z), φ(v)) ≤ d(φ(z), ũ),

−f(v) otherwise.

(8)

Figure 1. Linear classifiers based on mirror points.
The dotted line w̃T x̃ + b = 0 is a linear separating
hyperplane and the arrow points out to the region in
which data are classified with positive labels. “O”s
and “X”s are some data points that belong to the pos-
itive and negative classes, respectively. The mirror
point of φ(x) is m̃x. Then, z can be classified accord-
ing to the distances d(φ(z), φ(x)) and d(φ(z), m̃x). If
d(φ(z), φ(x)) is not larger than d(φ(z), m̃x), z is clas-
sified to the same class of point x. Otherwise, z is
classified to the other class.

AM ũ
φ(v) uses a single pair of mirror points to approxi-

mate f . In the following, we design a procedure IAM

based on an integration of L AM -type classifiers (i.e.,

AM
ũj

φ(vj)
(z), j = 1, . . . , L) to approximate f in a more

accurate way, and its pseudo codes are listed below.

Procedure IAM(input: z, output: result)
0. vj and ũj are given for all j = 1, . . . , L.
10. result ← 0.
20. For (j=1 to L)
30. Compute d(φ(z), ũj) and d(φ(z), φ(vj)).

40. result←result+Ξ
ũj

φ(vj)
(z)

50. END FOR

60. result ← sgn(result),

where Ξũ
φ(v)(z) is defined as

Ξũ
φ(v)(z) =

{

f(v)Dz
ũ,v if d(φ(z), φ(v)) ≤ d(φ(z), ũ),

−f(v)Dz
ũ,v otherwise.

(9)
where Dz

ũ,v = |d(φ(z), ũ)− d(φ(z), φ(v))|.

Compared to other fast methods [1][3][5] for SVM
decision, one distinct feature of our approximate ver-
sion IAM is that, instead of finding a single ũ for ap-
proximating m̃v, decision combining of multiple simple
classifiers based on mirror pairs (for example, (8) and
(9)) is used for approximating the decision obtained
from the SVM.

Two problems remained to be solved in the proposed
methods are how to find the approximate pre-image of
a mirror point and how to find a suitable combination
of classifiers. These two problems are addressed in the
next two subsections, respectively.
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3.1 Pre-image of a mirror point
Given m̃v, the problem of finding (β∗, x∗) satisfying

the following equation is considered:

(β∗, x∗) = arg min
β∈R,x∈ΩI

d(βφ(x), m̃v), (10)

where ΩI = {x1, . . . , xn} is the input training data set.
m̃v can then be approximated as ũ = β∗φ(x∗). We find
(β∗, x∗) by investigating the training data set. First,
for each xi, β∗

i defined below needs to be found.

β∗

i = arg min
βi∈R

d(βiφ(xi), m̃v) (11)

In fact, analytic solutions of β∗

i can be obtained as
shown below.

β∗

i =
R1

R2

d(β∗

i φ(xi), m̃v) =(R3 −
R2

2

R1
)

1
2

(12)

where R1 = φ(xi)
T φ(xi), R2 = m̃v

T φ(xi) and R3 =
m̃v

T m̃v. After finding β∗

i for each xi contained in the
training set, (β∗

i , xi) with the minimal d(β∗

i φ(xi), m̃v)
among all i = 1, . . . , n is set to (β∗, x∗).

More generally, we can consider that

(β∗∗, x∗∗) = arg min
β∈R,x∈Λ

d(βφ(x), m̃v), (13)

where ũ = β∗∗φ(x∗∗), and an iterative method devel-
oped in [5] can be used for solving this approximate
pre-image problem.

3.2 Combination of classifiers
It can be easily verified that the following classifica-

tion rule is used to classify a given z in the procedure
IAM.

fIAM (z) = sgn(

L
∑

i=1

Ξũi

φ(vi)
(z)). (14)

How to find a suitable set
{(v1, ũ1), (v2, ũ2), . . . , (vL, ũL)} that best approxi-
mates f is addressed below.

Assume that K AM -type classifiers are given and
whose distance-weighted functions are Ξ1(.), . . . ,ΞK(.),
respectively. The problem is formulated as finding
a suitable subset containing L classifiers, among the
K classifiers (L < K), which has the best classifi-
cation performance. The initial K classifiers can be
generated by randomly choosing v ∈ Λ and finding
its ũ that best approximates m̃v as described in Sec-
tion 3.3, while in our work, they are generated by
choosing from the input training data set. Let P

be a mapping from {1, . . . , L} to {1, . . . ,K}. Then,

ΞP (1),ΞP (2), . . . ,ΞP (L) correspond to a set of L classi-
fiers chosen from Ψ = {Ξ1, . . . ,ΞK}, and to choose a
set of L classifiers among the initial K ones is equiv-
alent to find a P . Consider that it is expected that
sgn(

∑L
i=1 ΞP (i)(xj)) = yj for all j = 1, . . . , n, in the

ideal case. A performance index is then defined as

g(P ) =

n
∑

j=1

yj(sgn(

L
∑

i=1

ΞP (i)(xj))), (15)

and it is desired to find a P maximizing the perfor-
mance index:

P ∗ = arg max
P

g(P ) (16)

To find the global optimal P ∗ is a difficult task, and
a suboptimal P̂ is found instead in our work, as shown
in the following.

At first, we construct a graph G with L levels. For
each level, there are K nodes. For each pair of adjacent
levels (l, l+1), l = 1, . . . , L−1, there is an edge linking
each node on level l to each node on level l + 1. Node
Ni,l denotes the node at level l and represents classifier
Ξi. Initially, let Sn(Ni,1) = [Ξi(x1), . . . ,Ξi(xn)] and
∆(Ni,1) = i, i = 1, . . . ,K.

Then the following procedure is performed from l =
1 to l = L−1 to find P̂ . Given l, the following two steps
are performed for each node Nm,l+1,m = 1, . . . ,K.
First,

∆(Nm,l+1) = arg max
i

n
∑

j=1

yj(sgn(Sn(Ni,l)j+Ξm(xj))),

(17)
where Sn(Ni, l)j is the j-th component of Sn(Ni, l).
Then, we set Sn(Ni,l+1) by

S(Nm,l+1) = S(Θ(Nm,l+1)) + [Ξm(x1), . . . ,Ξm(xn)]
(18)

where Θ(Nm,l+1) = N∆(Nm,l+1),l.
After performing the above procedures iteratively,

P̂ is set as P̂ (j) = Index(ΘL−j+1(Nj∗,L)), j =
1, . . . , L, where Θt = Θ ◦ Θ ◦ . . . Θ is the compo-
sition of Θ t times, Index(Ni,l) = i, and j∗ =
arg maxj

∑n

i=1 yisgn(S(Nj,L)i). The associated clas-

sifiers are served for IAM where Ξ
ũj

φ(vj)
= ΞP̂ (j). Note

that the above method can obtain the global optimal
if sgn(.) is modified to as an identical function in (15),
(17) and the definition of j∗. In fact, in this case, the
above method finds a path with the largest additive
score based on DP if the score of a node Ni,l is defined
as

∑n

j=1 Ξi(xj). This DP-based method can not ensure
to find P ∗ since sgn(.) is not additive. However, it can
help find a good suboptimal solution according to our
experience.
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4 Experimental Results
Two experimental results, where the first uses the

Ripley data set 1 that is a synthetic example and the
second uses a real ionosphere data set 2, are presented
in this section. We use LIBSVM 3 for generating SVM
classifiers. The approximate mirror points are all found
off-line. The RBF kernels are adopted and the param-
eters γ and C used for training SVM for Ripley and
ionosphere data sets are (1, 100) and (0.45, 10), respec-
tively.

The correct rates for training and testing data of
the Ripley data set using our method are 88% and
89%, respectively, which are comparable to the clas-
sification results 89.6% and 89.7% obtained by SVM
4. From these experimental results, our method can
achieve 19.5 times faster than SVM did with compara-
ble results.

For ionosphere data set, we use ten-fold cross-
validation method to verify the classification and
speedup performance. The correct rates of SVM for
the training and testing data are 100% and 94.6%, re-
spectively. Fig. 2 shows the experimental results. For
example, when the number of mirror vectors in use
is 9.6, the speedup ratio is 17.9. The obtained cor-
rect ratios for training and testing data are 89.2% and
90.0%, respectively. In addition, the best correct rates
for training and testing data are 93.7% and 93.7%, re-
spectively, where the number of vectors involved in de-
termining classifications is 27 (i.e the speedup ratio is
6.36).

5 Conclusion
We propose a new method to speed up the SVM

based on the idea of mirror points. Compared to those
in [1][3][5], a distinct feature of our method is that
combination of decisions of multiple simple classifiers is
used for approximating the decision of the SVM. Fur-
thermore, our method can also be applied for RBF
networks or classifiers whose normal vectors of their
separating hyperplanes can be expressed like (1). One
of our future work is to investigate that how to find
better approximate mirror points.
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