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Abstract

In this paper novel theory to automate shape modelling
is described. The main idea is to develop a theory that is
intrinsically defined for curves, as opposed to a finite sam-
ple of points along the curves. The major problem here is to
define shape variation in a way that is invariant to curve pa-
rameterisations. Instead of representing continuous curves
using landmarks, the problem is treated analytically and nu-
merical approximations are introduced at the latest stage.
The problem is solved by calculating the covariance ma-
trix of the shapes using a scalar product that is invariant to
global reparameterisations.

An algorithm for implementing the ideas is proposed and
compared to a state of the art algorithm for automatic shape
modelling. The problems with instability in earlier formu-
lations are solved and the resulting models are of higher
quality.

1. Introduction

The basic idea behind statistical models of shape is to
from a given training set of known shapes be able to de-
scribe new formerly unseen shapes, which still are represen-
tative. The shape is traditionally described using landmarks
on a geometric object. A major drawback of this approach is
that a dense correspondence between the shapes must be es-
tablished. In practice this has been done by hand. A process
that commonly is both time consuming and error prone.

There have been many suggestions on how to automate
the process of building shape models, or more precisely,
finding a dense correspondence among a set of shapes [9].
Many have stated the correspondence problem as an opti-
misation problem [1, 2, 4, 8, 10, 12, 6, 7, 5].

Minimum Description Length or MDL [11] is a
paradigm that has been used in many different applications.
In recent papers [3, 4, 7] this paradigm is used to locate a
dense correspondence between the boundaries of shapes.

A problem when locating these correspondences, by op-
timizing over parameterisations, arises when continuous
curves are represented by a finite sets of landmarks. Cor-
respondences of landmarks do not necessarily imply cor-
respondence of the entire curves. If many landmarks are

placed in one point or a small region, the cost function mea-
suring the correspondence may get a low value, but this
value is based on a small part of the curve.

It has been suggested that this can be prevented by using
a ”master example”, i.e. an example that is not reparame-
terised during optimisation. The idea is that each curve will
be reparameterised to fit the “master example”. This strat-
egy breaks down if there are too many curves in the training
set. A cost for bad reparameterisations can also be applied
as suggested in [13]. The cost penalises that the parameteri-
sations move in the same direction on all curves. The mean
movement of corresponding landmarks should be zero dur-
ing optimisation.

In this paper it is shown that the infimum of the descrip-
tion length (DL) in the standard formulation is zero. A new
scalar product, which always considers the entire curves and
is invariant to global reparameterisations, is defined. Using
the new scalar product when calculating the covariance ma-
trix makes the optimisation well defined and the infimum
of the DL not equal to zero. With this formulation it is no
longer an advantage to place all landmarks at one point or
in a small region.

2 Preliminaries

When analysing a set ofns similar shapes, it is conve-
nient and usually effective to describe them using Statistical
Shape Models. After the shapesxi (i = 1 . . . ns) have been
aligned and normalised to the same size, a PCA-analysis of
the covariance matrix for the shapes is performed. Thei-th
shape in the training set can now be described by a linear
shape model of the form,

xi = x̄ + Φb,

wherex̄ is the mean shape, the columns ofΦ describe a set
of orthogonal modes of shape variation andbi is the vector
of shape parameters for thei-th shape.

Assume that a population of geometric objects, repre-
sented as continuous curvesci(t), i = 1, . . . , ns, t ∈ [0, 1],
is given and that the shape is to be modelled.

Each curve is represented using some arbitrary parame-
terisation. For simplicity it is assumed that they are param-



eterised by arc length,

ci : [0, 1] 3 s → ci ∈ R
2 .

To model the shape it is necessary to solve the corre-
spondence problem, i.e. to find parameterisations{γi}

ns

i=1
,

whereγi : [0, 1] → [0, 1] are strictly increasing functions
so thatci(γi(s)) corresponds tocj (γj (s)) for all pairs(i, j)
and all parameter valuess ∈ [0, 1].

Correspondence between the curvesci(γi(s)) and
cj (γj (s)) is denotedci(γi(s)) :=: cj (γj (s)).

MDL has proven to be a successful algorithm for locat-
ing the parameterisation functionsγi . The cost in MDL is
derived from information theory and is, in simple words, the
effort that is needed to transmit the model and the training
shapes the model approximates bit by bit. The MDL - prin-
ciple searches iteratively for the set of functions{γi}

ns

i=1

that gives the cheapest model to transmit. The cost func-
tion can be interpreted as a tradeoff between a model that is
general (can represent any instance of the object) and com-
pact (can represent the variation with as few parameters as
possible).

The goal of this paper is to derive a shape theory that
is intrinsically defined for curves and is independent of pa-
rameterisations. It is reasonable to use a linear model, i.e.

ci(γi(s)) = c̄(s) +

nm
∑

k=1

bi,kΦk (s) = c̄ + Φbi .

One way of determiningΦ from experimental data
{ci}

ns

i=1
, where the curves{ci}

ns

i=1
have been aligned ac-

cording to the Procrustes condition (similarity transforma-
tions), is to make a singular value decomposition of the ma-
trix C0 = 1

ns−1
XX

T , whereX = [c1 − c̄, . . . , cns
− c̄].

This is straightforward in the case of finite point configura-
tions, but for curves it is more difficult since the ’column
vectors’ are infinite dimensional. However, the covariance
matrix C = 1

ns−1
X

T
X is finite dimensional and has the

same singular values. The elementcij is a scalar product of
the curve(ci − c̄) ◦ γi with the curve(cj − c̄) ◦ γj . The
standard scalar product is

cij =

∫

1

0

(ci (γi(s)) − c̄(s)) · (cj (γj (s)) − c̄(s))ds . (1)

A possible criterion for solving the correspondence prob-
lem (ci(γi(s)) :=: cj (γj (s)) for all i,j) is the description
length of the shape model. The reparameterisation func-
tions {γi}

ns

i=1
are located by minimizing the description

length.

Definition 1. The description length of a shape modelM
is

DL(M) =
∑

λi≥λc

(1 + log
λi

λc

) +
∑

λi<λc

λi

λc

+ K ,

where the scalarsλi are the eigenvalues of the covariance
matrix C, the scalarλc is a cutoff constant andK is a
scalar, which is independent of the parameterisations. The
constantK can be ignored during optimisation and the fol-
lowing cost function is used,

F (C) =
∑

λi≥λc

(1 + log
λi

λc

) +
∑

λi<λc

λi

λc

. (2)

3 Difficulties with Parameterisation Depen-
dent Methods

One problem with optimising the description length as
presented above is that it is not independent of curve pa-
rameterisations. By changing all parameterisationsγi with
a common parameterisationγ, so thatγ̃i = γi ◦γ, one effec-
tively puts different weights at different parts of the curve.
The same problem occurs when a discrete set of landmarks
is used as in [3, 4]. The most weight is put on that part of the
curve which has the most landmarks. The problem with this
is that the landmark placement problem becomes ill-defined
as illustrated by the following theorem.

Theorem 1. Using criterion (2),

min
γ1 ,...,γn

F (C) = 0 .

The infimum is attained in the limit when all weight is put
at a single point.

Proof. Assume that all landmarks are placed at one point on
each curve. Then the covariance matrixC will be the zero
matrix. Hence all eigenvalues ofC are zero andF (C) =
0.

This shows that the minimisation criterion is not well de-
fined. A global optimiser could find the global minimum.
Even if the global minimum is not found it is still possible
to reduceF (C) by concentrating the landmarks on parts of
the curves with low variance. This means that it is possi-
ble to reduce the DL in two ways. Both by finding corre-
spondences and by performing a global reparameterisation.
By global reparameterisation is meant a reparameterisation
function that is applied to all curves in the training set. Such
a global reparameterisation function can put all the weight
at one point or a small section of the curve. Therefore any
algorithm for automatic landmark placement based on (2)
tends to gather points together.

In order to avoid this several authors have presented pre-
liminary solutions such as keeping the parameterisation of
the first curve unchanged or penalising bad reparameterisa-
tions. But even such methods have difficulties. For exam-
ple, if one keeps the parameterisation of the first curve un-
changed it is still possible to reparameterise the othern− 1



curves so as to put more weight to a particular point and
ignore the mismatch with the first curve.

A new criterion based on invariance to global reparame-
terisations would be desirable.

4 A Parameterisation Invariant Method

To improve the algorithm discussed above, a new scalar
product, which is invariant under global reparameterisations
is proposed. This removes the undesired way to reduce the
DL.

Definition 2. Let {ci}
ns

i=1
be the curves with the mean

curve subtracted and let them be parameterised with
{γi}

ns

i=1
. A new scalar product is defined by

ci · cj =
1

ns

ns
∑

k=1

∫

1

0

ci

(

γi ◦ γ−1

k (s)
)

cj

(

γj ◦ γ−1

k (s)
)

ds .

Intuitively, what happens is that the weight is distributed
by what could be seen as a sort of mean arc length parame-
terisation.

This also means that the entire curves are considered,
since it can be seen that there is one term that gives arc-
length parameterisation forci and one term that gives arc-
length parameterisation forcj .

Theorem 2. The scalar product in definition 2 is invariant
under global reparameterisations.

Proof. Let {γi}
ns

i=1
be a set of parameterisation functions

such thatci(γi(s)) :=: cj (γj (s)). Let γ be an arbitrary
reparameterisation function and let̃γi(s) = γi ◦ γ and
γ̃j (s) = γj ◦ γ. Thenci(γ̃i(s)) :=: cj (γ̃j (s)) still holds.

ci (γ̃i(s)) · cj (γ̃j (s)) =

1

ns

ns
∑

k=1

∫

1

0

ci

(

γ̃i ◦ γ̃k
−1(s)

)

cj

(

γ̃j ◦ γ̃k
−1(s)

)

ds =

1

ns

ns
∑

k=1

∫

1

0

ci

(

γi ◦ γ ◦ γ−1 ◦ γ−1

k (s)
)

·

·cj

(

γj ◦ γ ◦ γ−1 ◦ γ−1

k (s)
)

ds =

1

ns

ns
∑

k=1

∫

1

0

ci

(

γi ◦ γ−1

k (s)
)

cj

(

γj ◦ γ−1

k (s)
)

ds =

ci(γi(s)) · cj (γj (s)) .

The scalar product would actually be invariant to global
parameterisation using only one term in the sum in Defi-
nition 2. However, even though totally global reparame-
terisations are prevented this way it is still possible to find

parameterisations that descrease the DL by gathering land-
marks together in different ways on differenct curves. The-
oretically it could still be possible to get some effect of this
type even when using all the terms but the parameterisations
would be hard to find and even if found the effect would be
small.

Another motivation for using all parameterisations in
each scalar product is that otherwise the scalar products
would not be compareable since the weight would be dis-
tributed differently on the curves.

To evaluate the scalar product numerically it is of course
necessary to sample the curves. These sample points are
just a step in the evaluation and should not be confused with
landmarks in the traditional sense.

5 Experimental Validation

In this section the algorithm is validated on three data
sets.
Hands: 23 contours of a hand segmented out semi-
automatically from a video stream. To simplify the seg-
mentation the hand was filmed against a dark background.
Femurs: 32 contours of femurs taken from X-rays in the
supine projection.
The letter g: 17 curves of the letter g. The curves of the
letter g are sampled using a device for handwriting recogni-
tion.

Models built using the proposed scalar product are com-
pared with models built using the standard scalar product.
For the standard scalar product the algorithm uses node cost
penalties [13] to prevent clustering of landmarks and the
other problems discussed earlier.

Thodberg’s efficient implementation of MDL [13] has
been used for the comparison. MATLAB source code and
test data are available athht@imm.dtu.dk.

Seven control nodes have been used for the reparameter-
isations in all our simulations. For the standard scalar prod-
uct 2048 landmarks were placed on each curve and for the
proposed scalar product the number of sample points were
65 times the number of curves in the training set (between
1105 and 2080). The initialisations and parameters for the
optimisation algorithm were identical in all cases.

By specificity of the models is meant that shapes gen-
erated by reasonable parameter values (±3 std.) should be
representative for the training set.

In Figure 1, the mean shape and the mean shape plus and
minus three standard deviations of the first shape mode is
plotted for each model. In this figure, the specificity of the
models can be compared qualitatively.

The results for the most difficult dataset, the one of g-
shapes, are presented. In the figure, it can be seen that the
shapes generated by the proposed algorithm are more rep-
resentative. Look at the left figure and note, for example,



the sharp bend in middle of the dashed curve and the not
sharp enough corner of the solid curve. For the other two
datasets the difference in the results of the two algorithms
are harder to distinguish. The generality of the models is

Figure 1. The mean (solid line) and the first
mode of variation (dashed lines) of the opti-
mised models. The model on the left is opti-
mised using the standard scalar product and
the model on the right is optimised using the
proposed scalar product.
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Figure 2. The mean square approximation
error of the six models is plotted against
the number of modes used. The top figure
shows the models of femurs, the middle fig-
ure shows the models of g:s and the bottom
figure shows the models of hands.

measured as the mean square error in leave-one-out recon-
structions. Leave-one-out means that a model is built with
all but one example. The model is then fitted to this un-
seen example. The error between the original curve and the
model approximation curve is calculated by integrating the
squared distance between the curves by arc-length. This is
shown in Figure 2. It can be seen that the new scalar product
gives models that generalise better than models built using
the standard scalar product, even if node cost penalties are
used.

6 Summary and Conclusions

In this paper a new scalar product that is invariant to
global reparameterisations has been proposed. The opti-
misation of the shape model becomes invariant to global

reparameterisations and therefore focuses on finding corre-
spondences. This gives a more robust and stable algorithm.
The algorithm is compared to a state of the art algorithm,
which uses ad hoc solutions to prevent clustering of land-
marks. The comparison shows that the achieved models are
more specific and general.

In the future, it would be interesting to explore these
principles further. A similar approach with a new scalar
product using inverse parameterisation functions should be
able to extend to 3D models of surfaces. Also, extentions to
segmentation algorithms should be possible.
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