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Abstract

Head Tracking and pose estimation are usually consid-
ered as two sequential and separate problems: pose is es-
timated on the head patch provided by a tracking module.
However, precision in head pose estimation is dependent on
tracking accuracy which itself could benefit from the head
orientation knowledge. Therefore, this work considers head
tracking and pose estimation as two coupled problems in a
probabilistic setting. Head pose models are learned and in-
corporated into a mixed-state particle filter framework for
joint head tracking and pose estimation. Experimental re-
sults on real sequences show the effectiveness of the method
in estimating more stable and accurate pose values.

1. Introduction

Head detection and tracking are essential components in
video applications related to human behaviour understand-
ing. It is commonly used as a first step before applying al-
gorithms for other higher level tasks, such as face and facial
expresion recognition or gaze direction estimation.

Many methods have been proposed for head tracking and
pose estimation. Most of them consider tracking and head
pose estimation as two sequential but independent problems
[1], [3], [5], [8], [11],[12]. The principle of these methods is
to first track the head to extract its location, and then to esti-
mate head orientation by exploiting this location. As a con-
sequence, the head pose estimation process is very depen-
dent on the accuracy of the tracking since, as reported in
[1], head pose is very sensitive to the localization of the ex-
tracted head box. At the same time, the knowledge of the
head pose could improve the head modeling and thus the ac-
curacy of the tracking. This paper addresses these issues by
coupling the tracking and head pose estimation processes in
a probabilistic setting. For this purpose, a mixed-state parti-
cle filter framework is used [10], where a head spatial con-
figuration (e.g. position and scale) and its pose are repre-
sented in a joint state-space model. The joint posterior dis-
tribution of the state given the sequence of images is esti-
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mated at each instant and propagated to the next time instant
using the state dynamic. The pose at a given instant is then
obtained by marginalyzing over the spatial configuration
part of the state. As a result, in the approach we propose,
the spatial configurations leading to a better pose model-
ing will have a greater impact on the pose result, leading to
a more accurate estimation of the pose than with the track-
ing then pose estimation approach. This is supported by ex-
periments we performed. Finally let us note that method that
are based on 3D head model, inherently perform joint track-
ing and head pose estimation [4]. However in order to work
these method generally rely on images with either head at
high resolution, or on stereo vision, or on prelearned model
of the tracked person.

This paper is organized as follows. Section 2 describes
our head pose modeling. Section 3 shows the embedding
of these head pose models in a mixed-state particle filter
framework. Section 4 reports results of pose estimation on
still images and tracking results on real sequences. Section 5
gives the conclusions.

2. Head Pose Modeling and Estimation

2.1. Head Pose Modeling and Learning

The head poses are defined by a pan angle denoted θ
and ranging from -90 to 90 degrees. Allowed values are
discretized with a 22.5 degrees step. Training data patches
are extracted from head images by locating a tight bound-
ing box around the head. These patch images are resized
to the same 64 × 64 resolution and preprocessed by his-
togram equalization to reduce the effect of lighting condi-
tions. Four filters, one Gaussian and three rotation invariant
Gabor wavelets, are then applied on these patches (Fig. 1).
A simple Gabor wavelet is defined by:
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where ω0 denotes the angular frequency, σ the scale param-
eter and α the orientation of the wavelet. A rotation invari-
ant wavelet is obtained by integrating a simple wavelet over
the orientation α. The rotation invariant Gabor wavelet we



a) b)
Figure 1. a)Reference grid; b) Image features

used are defined by the scales σ = 1, 2, 4 and angular fre-
quency w0 = 1

2 ,
1
4 ,

1
8 . The resulting images are sampled at

191 points of a regular grid located inside a reference disk
C of center (32.5, 32.5) and of radius 31.5 (Fig. 1a).

For each filter Ψi, the features computed from an im-
age {f i

j , j ∈ G} are normalized to give f̃ i = {f̃ i
j =

f i
j−mi

si
, j ∈ G}, where mi and s2i are the mean and vari-

ance of the ith features. This normalization is made to pre-
vent the features of a filter to dominate the other because
their values are higher. These features are then concatenated
in a single feature vector z = {f̃ i, i = 1, 2, 3, 4}.

To learn the model of a head pose we use the CMU PIE
database [9], which contain 68 persons at the needed head
poses. For each head pose θ, the feature vectors are clus-
tered in K clusters using a Kmeans algorithms. The K cen-
ters of cluster, eθ

k, k = 1, ...,K are taken to be the models
of the head pose. For each head pose the standard devia-
tion of the features σθ

k and the normalized number of ele-
ment of each cluster πθ

k are kept.

2.2. Head Pose Estimation

The head pose of an input image characterized by its fea-
ture z is estimated using the maximum a posteriori princi-
ple :

θ∗ = argmax
θ
p(θ|z) = arg max

θ

p(z|θ)p(θ)

p(z)
. (1)

Assuming for static images that p(θ) is uni-
formly distributed, the MAP estimation resume to
θ∗ = arg maxθ p(z|θ). We assume that for each head
pose θ the components of the feature vector are indepen-
dent and can be modeled by a Gaussian mixture having as
center the examplars eθ

k, k = 1, ...,K, as diagonal covari-

ance matrix Σθ = diag(σθ
k

2
) and as probability mixtures

πθ
k. The probability of data given a head pose is mod-

eled by p(z|θ) =
∑K
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θ
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As components of a feature vector can be outliers, we will
also use the saturated Gaussian likelihood:
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where T = exp−3 is a lower threshold. This term is usefull
to avoid local differences between an exemplar and the in-

put image to conduct to a very low likelihood even when the
majority of the remaining component features are in good
agreement.

3. Joint Tracking and Head Pose Estimation

Head tracking and pose estimation are performed in a
probabilistic framework.

3.1. Mixed-State Particle Filter.

Particle filtering (PF) implements a recursive Bayesian
filter by Monte-Carlo simulations. Let X0:t = {Xl, l =
0, . . . , 1} (resp. z1:t = {zl, l = 1, . . . , t}) represents the se-
quence of states (resp. of observations) up to time t. Further-
more, let {X i

0:t, w
i
t}

Ns

i=1 denote a set of weighted samples
that characterizes the posterior probability density function
(pdf) p(X0:t|z0:t), where {X i

0:t, i = 1, . . . , Ns} is a set
of support points with associated weights wi

t. The samples
and weights can be chosen using the Sequential Importance
Sampling (SIS) principle [2]. Assuming that the observa-
tions {zt} are independent given the sequence of states,
the state sequence X0:t follows a first-order Markov chain
model, and that the prior distribution p(X0:t) is employed
as proposal, we obtain the following recursive update equa-
tion [2] for the weight wi

t ∝ wi
t−1 p(zt|X

i
t). To avoid sam-

pling degeneracy an additional resampling step is necessary
[2]. The standard PF is given by :

1. Initialisation : ∀i, sample X i
0 ∼ p(X0); set t = 1

2. IS step: ∀i sample X̃ i
t ∼ p(X i

t |X
i
t−1); evaluate w̃i

t.

3. Selection: Resample Ns particles {X i
t , w

i
t = 1

Ns
}

from the set {X̃ i
t , w̃

i
t}; set t = t+ 1; go to step 2.

In the mixed state particle filter approach of [10], the
state X = (k, x) is the conjunction of a discrete variable
k labeling a discrete set of objects models ek, called ex-
emplars and a continuous variable x specifying the spatial
configuration of the object. In order to implement the fil-
ter, three elements have to be specified: a state model, a dy-
namical model and an observation model.

3.2. State space

The stateX is a mixed variableX = (k, x). The discrete
variable k = (θ, l) labels an element of the set of head pose
models {eθ

l , θ, l = 1, ..,K} built previously. The continu-
ous variable x = (tx, ty, sx, sy) is a vector parameterizing
the transform Tx defined by:

Txu =

(

sx 0
0 sy

)

u+

(

tx
ty

)

. (4)

which characterizes the object configuration, where (tx, ty)
specifies the translation of the object in the image plane,
and (sx, sy) the scale of the width and the height of the ob-
ject according to a reference size.



3.3. Dynamics

The process density on the state sequence Xt = (kt, xt)
is modeled as a second order process P (Xt|Xt−1, Xt−2).
We assume that the two components of the states, kt and xt,
are independent, and that a head pose at a given time t, kt,
depends only on the head pose at the previous time kt−1.
Then the equation of the process density is:

P (Xt|Xt−1, Xt−2) = p(kt|kt−1)p(xt|xt−1, xt−2) (5)

The dynamic of the continuous variable x is modeled as a
classical second order auto regressive dynamical mode. The
dynamic of the discrete variable k is defined by the transi-
tion process p(kt|kt−1) = p(θt, lt|θt−1, lt−1):

p(θt, lt|θt−1, lt−1) = p(lt|θt, lt−1, θt−1)p(θt|θt−1). (6)

p(θt|θt−1) is based on the distance between the two head
poses. p(lt|θt, lt−1, θt−1) is a probability table learned us-
ing the training set of faces. That is, for different head poses,
the exemplars are more related when the same persons were
used to build them. When θ 6= θ′ p(l|θ, l′, θ′) is taken pro-
portional to the number of persons who belong to the class
of eθ

l and who are also in the class of eθ′

l′ . When θ = θ′,
p(l|θ, l′, θ′) is large for l = l′ and small otherwise.

3.4. Observation model

Finally, let us define the object likelihood. For each state
X = (k, x) the observations are obtained by first extract-
ing an image patch from the image according to C(x) =
{Txu, u ∈ C}, and then filtering this image patch at the
points specified by the gridG with the four filters defined in
the previous Section, and concatenating the filtered values
in a feature vector z(x). The likelihood p(z|X) = p(z|k, x)
is finally modeled by p(z|k, x) = pT (z(x)|k), pT referring
to Equation 3.

The head pose is then estimated a each time as the mode
of the head pose distribution after marginalization over the
spatial configuration θ?

t = argmaxθ

∑

i/θi
t
=θ w

i
t

4. Results

4.1. Head Pose Estimation Results

To test the efficiency of the pose modeling we used the
68 persons of PIE database and their head pose. For the first
experiments we use the same setup than [1]. The 34 first per-
sons were selected and the feature of their head poses used
to train the models. The half remaining were used to test the
models. For comparison , we modeled the probability distri-
bution of the training features with Gaussian mixture mod-
els (GMM),instead of kmeans, which have as number of
mixtures the number of exemplars and test the GMMs with
the test features. Table 1 shows the recognition rates when
the number of exemplars per head pose are 1 and 2. This ta-

NEP State of The Art [1] Gaussian Sat. Gaussian GMM
1 90% 90% 94% 90%
2 × 87.5% 94.8% 89.9%

Table 1. Recognition rate for a given number
of exemplar per head pose (NEP)

Gaussian Sat. Gaussian GMM
NEP 3 4 2

Av. of R.R. 67.3% 70.5% 71.2%
St.dev. of RR 2.4% 2.3% 2.3

Table 2. Recognition rates for PIE+FERET

ble shows that smoothing the likelihood is indeed very use-
ful, helping in reducing the effect of outlier feature com-
ponents. For the best results (NEP=2, saturated Gaussian),
the average of the angular error is 1.2 degree and the stan-
dard deviation 4.5. These values show that the estimation
errors occur only between close head poses.

To further study the effect of the number of exemplars,
we included in the database 72 persons of the FERET
database [7], leading to a total of 140 persons. Then, 70
persons were randomly selected and their head pose used
to train the models, and the half remaining used to test
the models. We ran this set up 100 times and computed
the average and standard deviation of recognition rates
for NEP=1,2,3,4. Table 2 gives the best results that were
achieved with NEP=3 for the Gaussian likelihood, NEP=4
for the Saturated Gaussian likelihood and NEP=2 for the
GMMs. These results show that more exemplars improve
the recognition and that the saturated Gaussian likelihood is
still doing better than the Gaussian likelihood (this indeed
true for all NEP). We can also see that the GMM modeling
is giving similar results than the kmeans exemplar learning
with sarturated Gaussian likelihood testing.

4.2. Tracking Results

The tracking algorithm described previously was tested
on several video sequences. None of the tracked persons be-
longed to the training database. The positions of the cam-
era and the illumination conditions for the video sequences
used to test the algorithm were different than those used in
the training database. Despite this mismatch between train-
ing and test sets, the tracking was correctly done and the es-
timation of the head pose was visually very satisfying. Fig. 2
shows tracking results of a typical sequence.

We conducted experiments to compare our method to
the traditional sequential head tracking then pose estima-
tion approach. We used a color-based state-of-the-art par-
ticle filter tracker described in [6], which provides at each
time a patch image corresponding to the head. The patch
image is processed as described in Section 2 to extract the
features, then compared to the exemplars using Equation
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Figure 2. Head tracking and pose estimation.
1rst clock: pan angle; 2nd clock: tilt angle

TE mean TE std PEE mean PEE std
exemplar based 0.09 0.04 8.83 11.02

color based 0.15 0.06 11.02 16.82

Table 3. Tracking error (TE) and pose estima-
tion error (PEE) mean and standard deviation

3 for pose evaluation. For the sequence of Figure 2 we
generated head orientation ground truth by manually ex-
tracting a tight bounding box around the head and apply-
ing the pose estimation method. At each time t, the surface
of the ground truth box is denoted GS(t). We ran the two
trackers that output at each time a box containing the head
with surface TS(t) and an estimated head pose. If at each
time JS(t) is the joint surface between the ground truth
and the tracker, we choose to measure the tracking error

by e(t) = 1
2

(

GS(t)−JS(t)
GS(t) + TS(t)−JS(t)

TS(t)

)

. This error is 0

when tracking is perfect, and 1 when it totally fails. Fig-
ure 3 shows tracking errors for the two methods and the es-
timated head orientations.

The results in Table. 3, shows that our method leads to
smaller tracking errors in average. The color tracker, on the
other side, can be confused by similar color in the back-
ground. This results in an over-estimate of the head patch
size (cf. the two error peaks at the end of the sequence),
which in turn results in pose estimation failures (Fig. 3,
right), as illustrated by Fig. 4.
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Figure 3. Left: spatial configuration errors.
Right: Pan head orientation estimation

t=109 t=138

Figure 4. Pose estimation failure due to bad
localization

5. Conclusion

We described in this paper a joint head tracking and pose
estimation algorithm. The novelty of the approach lie in
the coupling of the tracking and head pose estimation pro-
cesses in a probabilistic framework within a mixed state par-
ticle filter framework. By implicitly allowing to test multi-
ple head configurations, it reduces the sensitivity of the pose
estimation process on the tracking accuracy, a drawback of
methods that perform head tracking then pose estimation in
a sequential manner, and results in more stable and accu-
rate pose estimates.
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