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Abstract

The capability of maintaining the pose of the mobile
robot is central for basic navigation and map building tasks.
In this paper we describe a vision-based hybrid localization
scheme based on scale-invariant keypoints. In the first stage
the topological localization is accomplished by matching
the keypoints detected in the current view with the database
of model views. Once the best match has been found, the
relative pose between the model view and the current im-
age is recovered. We demonstrate the efficiency of the lo-
cation recognition approach and present a closed form so-
lution to the relative pose recovery for the case of planar
motion and unknown focal length of the camera. The ap-
proach is demonstrated on several examples of indoors en-
vironments.

1. Introduction and Related Work

The existing techniques for vision-based localization and
map building vary depending on the representation of the
environment and means of localization. The methods for
continuous pose maintenance typically recover the pose of
the robot and structure of the environment in a recursive set-
ting using tracked point features [5]. Such methods have
been applied successfully in smaller scale environments.
Using more descriptive scale-invariant features, the tasks
of map building, pose maintenance and global localization
were demonstrated by [14], using trinocular stereo sensor.
Approaches for localization by means of recognition vary
in the choice of features and means of determining an en-
vironment model. Commonly used representations are re-
sponses to a banks of filters [17], multi-dimensional his-
tograms [12, 7], local Fourier-transforms [15] and affine in-
variant feature descriptors [8]. These representations in the
context of mobile robot navigation were most commonly
obtained via principal component analysis (PCA) or vari-
ous clustering techniques [1, 6]. Alternative biologically in-

spired method mimicking behavior of bees was presented
in [2].

Our approach is motivated by the recent advances in
object recognition using local scale invariant features pro-
posed by [8] and adopts the strategy for localization by
means of location recognition. The image sequence ac-
quired by a robot during exploration is first partitioned to
individual locations, while recording the neighborhood re-
lationships between them. Each location is represented by a
set of model views and their associated scale-invariant fea-
tures. In the first topological localization stage, the current
view is classified as belonging to one of the locations. Once
the most likely location view is determined, we compute
the relative pose between the current view and the repre-
sentative view of the location. The scale invariant features
are sufficiently discriminant for successful location recogni-
tion and can handle larger displacements between the model
views and the test views.

2. Scale-Invariant Features

The use of the local feature detectors in the context of ob-
ject recognition has been demonstrated successfully by sev-
eral researchers in the past [13, 11]. In this paper we exam-
ine the effectiveness of scale-invariant (SIFT) features pro-
posed by [8]. These features have been shown to be stable
across wide variations in viewpoint and scale and can be lo-
calized efficiently. They correspond to stable points in the
scale space and can be detected by searching for peaks in
the imageD(x, y, σ), whereD(x, y, σ) = G(x, y, kσ) −
G(x, y, σ))∗I(x, y) is obtained by taking differences of two
neighboring images in the scale space build with Gaussian
kernel G(x, y, σ). In the second stage the detected peaks
with low contrast or poor localization along the edge are dis-
carded. More detailed discussion about enforcing the sepa-
ration between the features, sampling of the scale space and
improvement in feature localization can be found in [8, 4].
Once the location and scale have been assigned to candidate
keypoints, the dominant orientation is computed by deter-
mining peaks in the orientation histogram of its local neigh-



Figure 1. Examples of scale invariant key-
points. The circle center represents key-
point’s location and the radius is propor-
tional to it’s scale.

bourhood weighted by the gradient magnitude. The key-
point descriptor is then formed by computing local orien-
tation histograms (with 8 bin resolution) over4 × 4 grid
overlayed over16 × 16 neighbourhood of the point. This
yields 128 dimensional feature vector which is normalized
to unit length in order to reduce the sensitivity to image con-
trast and brightness changes in the matching stage. Figure 1
shows the keypoints found in the example images in our en-
vironment. In man-made indoors environments, the number
of features detected varies between 10 to 1000, in an im-
age of size480 × 640.

3. Location Recognition

The model of the environment, which we will use to test
our localization method is obtained in the exploration stage.
Given a temporally sub-sampled sequence acquired during
the exploration (images were taken approximately every 2-
3 meters), we partition the sequence into 18 different loca-
tions. Different locations in our model correspond to hall-
ways, sections of corridors and meeting rooms approached
at different headings. The number of views per location
vary between 8 to 20 depending on the appearance varia-
tion within the location. The transitions between the loca-
tions occur either at places where navigation decisions have
to be made or when the appearance of the location changes
suddenly. In order to obtain more compact representation of
the environment, we next choose the representative views
for each location. In this stage we experimented with differ-
ent strategies varying the number of representative views by
(1) choosing a single view taken in the middle of the loca-
tion, (2) choosing views taken in the middle and at the end
of each location or (3) evenly sampling the views belonging
to individual location yielding up to 4 views per location.
Table 1 shows the location recognition results as a function
of number of representative views on one training sequence
and two test sequences. Given a new image, each detected
SIFT keypoint is matched against the database of keypoints
choosing the nearest neighbor based on Euclidean distance

between two descriptors. In the subsequent voting scheme
we determine the location whose keypoints were most fre-
quently classified as nearest neighbors; such location is the
most likely location where the current view came from. We
only consider point matches whose nearest neighbor is at
least 0.5 times closer then the second nearest neighbor. De-
spite the large number of representative views (up to 4), rel-
atively poor performance on the second test sequence (134
images) was due to several changes in the environment be-
tween the training and testing stage. In 5 out of 18 locations
several objects were moved or misplaced. This sensitivity to

sequence NO.1 (250) NO.2 (134) NO.3 (130)
one view 84% 46% 44%
two views 97.6% 68% 66%
four views 100% 82% 83%

Table 1. Recognition rate in % of correctly
classified views.

dynamic changes is not surprising, since the most discrimi-
native SIFT features often belong to objects some of which
are not inherent to particular locations. The recognition rate
in such case can be improved by selecting larger number
of representative views and/or exploiting the knowledge of
environments’ topology captured by the neighborhood rela-
tionships between individual locations. The Hidden Markov
Model which explicitly exploits the spatial relationships al-
gorithm is described in more detail in [18]. Next we de-
scribe how to recover the relative displacement between
the current view and the closest view retrieved from the
database.

4. Pose estimation and match refinement

The current view and the matched model view are related
by a rigid body displacementg = (R, T ) represented by a
rotationR ∈ SO(3) and translationT = [tx, ty, tz]T ∈ R

3.
Provided that the camera is calibrated,g can be estimated
from the epipolar geometry between the two views. This
recovery problem can be further simplified taking into ac-
count the fact that the motion of the robot is restricted to
a plane. Here we outline an algorithm for this special case
and demonstrate how to recover the displacement in case of
unknown focal length. The case of general motion and un-
known focal length was studied by [16] and the solution
for the case of planar motion case has been proposed by [3]
in the context of uncalibrated stereo. Here we demonstrate
a slightly different, more concise solution to the problem.
Consider the perspective camera projection model, where
3D coordinates of pointX = [X,Y,Z]T are related to their



image projectionsx = [x, y, 1]T by an unknown scaleλ;
λx = X. In case the camera is calibrated the two views
of the scene are related byλ2x2 = Rλ1x1 + T , where
(R, T ) ∈ SE(3) is a rigid body transformation andλ1 and
λ2 are the unknown depths with respect to individual cam-
era frames. After elimination of the unknown scales from
the above equation, the relationship between the two views
is captured by so-called epipolar constraint

xT
2 T̂Rx1 = xT

2 Ex1 = 0, (1)

whereE = T̂R is the essential matrix1 In case of planar
motion, assuming translation inx − z plane and rotation
aroundy−axis by an angleθ, the essential matrix has the
following sparse form

E =

 0 −tz 0
tzcθ + t1sθ 0 tzsθ − t1cθ

0 tx 0

 (2)

where sθ(cθ) denote sin θ(cos θ) respectively. Given at
least four point correspondences, the elements of the es-
sential matrix[e1, e2, e3, e4]T can be obtained as a least
squares solution of a system of homogeneous equations of
the form (1). Once the essential matrixE has been recov-
ered, the four different solutions forθ andT = ±[tx, 0, tz]
can be obtained (using basic trigonometry) directly from
the parametrization of the essential matrix (2). The phys-
ically correct solution is then obtained using the positive
depth constraint. In the case of unknown focal length the
two views are related by so called fundamental matrixF

x̃T
2 F x̃1 = 0 with x = K−1x̃. (3)

The fundamental matrixF is in this special planar, partially
calibrated case related to the essential matrixE as follows

F = K−T EK−1 with K =

 f 0 0
0 f 0
0 0 1

 (4)

wheref is the unknown focal length. The remaining intrin-
sic parameters are assumed to be known. In the planar mo-
tion case the matrixF = [0, f1, 0; f2, 0, f3; 0, f4, 0] can be
recovered from the homogeneous constraints of the form
(3) given a minimum of four matched points. The extrac-
tion of the unknown motion parameters and the focal length
f however is not straightforward, since the translation and
the focal length appear in the parametrization of the ma-
trix F in a multiplicative way. We propose to use additional
constraints provided by so-called Kruppa’s equations [10].
It can be easily verified that a fundamental matrixF be-
tween the two views and the unknown intrinsic parameter
matrixK satisfy the following constraint

FKKT FT = λ2êKKT êT (5)

1 T̂ denotes a3 × 3 skew symmetric matrix associated with vectorT .

wheree = KT
‖KT‖ is the epipole andλ is the unknown scale

of the fundamental matrix. In our previous work [10] we
have shown that for the special case of planar motion the
above equation is satisfied if and only ifλ = 1. SinceF
ande = [−f1, 0, f4]T can be estimated, the renormalized
equation (5) yields following useful constraint on intrinsic
parametersK

FKKT FT = êKKT êT . (6)

Given the planar motion case, the middle entries of matri-
ces on the left and right side of equation (6) yield a con-
straint on the focal length and the entries of the fundamen-
tal matrix

f2
2 f2 + f2

3 = f2
4 f2 + f2

1 .

The solution for the focal length can then be directly ob-
tained from the above equation as

f =

√
f2
1 − f2

3

f2
2 − f2

4

. (7)

Oncef is computed, the relative displacement between the
views can be obtained by the method outlined for the cal-
ibrated case. Additional care has to be taken in assuring
that the detected matches do not come from a degener-
ate configuration. We have used RANSAC algorithm for
the robust estimation of the pose between two views, with
slightly modified sampling strategy. Figure 2 shows two ex-
amples of relative positioning with respect to two different
representative views. The focal length estimates obtained
for these examples aref = 624.33 andf = 545.30. The
relative camera pose for individual views is represented in
the figure by coordinate frame. Although we do not have
ground truth measurements for these experiments the re-
covered motions are consistent with the changes in visual
appearance between the views along the two test paths.
More detailed experiments evaluating the sensitivity of the
method can be found in [18].

5. Conclusions and Future Work

We have demonstrated the suitability and the discrimina-
tion capability of scale-invariant SIFT features in the con-
text of location recognition task. Although the matching and
location recognition methods can be accomplished using an
efficient and simple voting scheme, the recognition rate is
not surprisingly affected by small dynamic changes in the
environment. This can be partially resolved by incorporat-
ing more model views, using alternative more global de-
scriptors and exploiting the topology of the environment.
We also presented a method for computing relative dis-
placement between the current view and the model view
which enables metric localization with a location and can
be used for relative positioning tasks. We are in the process
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Figure 2. Relative positioning experiments
with respect to the representative views. Bot-
tom: Query views along the path between the
first view and the representative view for two
different locations. Top: Recovered motions
for two locations.

of carrying out more extensive experiments and incorporat-
ing the above techniques on the on-board navigation system
of a mobile robot.
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