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Abstract

1 This paper describes a face recognition method that is de-
signed based on the consideration of anatomical and biomechani-
cal characteristics of facial tissues. Elastic strain pattern inferred
from face expression can reveal an individual’s biometric sig-
nature associated with the underlying anatomical structure, and
thus has the potential for face recognition. A method based on the
continuum mechanics in finite element formulation is employed
to compute the strain pattern. Experiments show very promising
results. The proposed method is quite different from other face
recognition methods and both its advantages and limitations, as
well as future research for improvement are discussed.

1 Introduction

During the past a couple of years, biometrics research has re-
ceived considerable attention due to its high potential in security
related applications. There exists a wide variety of biometrics
techniques, some are relatively mature while other are still in their
infancy. Each biometrics technique has its pros and cons, and it is
not possible to find a single one that can solve all practical prob-
lems. Therefore, there is always a need for new biometrics.

Other than fingerprint, face recognition is probably the most
natural (and hence a popular) biometrics because we have devel-
oped the ability to recognize faces automatically with no con-
scious effort. Current face recognition methods rely on visible
photometric or geometric attributes that are present in intensity
images. Based on large amount of research and benchmark stud-
ies [1, 8, 7], it has been recognized that those methods suffer from
problems associated with following factors: (1) illumination and
pose variation; (2) make-up, hairs and glasses; (3) plastic surgery;
(4) face deformation during expression (dynamic face analysis in

1This work was performed under the auspices of the U.S. Department of En-
ergy by University of California Lawrence Livermore National Laboratory under
contract number W-7405-Eng-48. UCRL-PROC-XXXXXX

video sequence). Future face recognition methods must address
those difficult issues.

We propose a new class of features (or biometrics) that is de-
rived from the computed strain pattern exhibited during face ex-
pression. The proposed method has several advantages:

1. Elastic strain pattern is directly related to the material prop-
erty of underlying facial muscles. Our hypothesis is that, if
the anatomical structure of an individual face (geometry, dis-
tribution and strength of bones and muscles) is unique, then
this anatomical uniqueness should be reflected in the elastic
strain pattern. Strain pattern could be less sensitive to the
illumination and pose changes as well as camouflage using
makeup.

2. The computation of elastic strain map requires at least two
frames that capture the face deformation during expression.
Most face recognition methods use static images only and
dynamic face expression has been considered as an adverse
factor that may cause performance degradation [13]. How-
ever, a recent study by Yacoob and Davis [14] indicates that
deformed face (smiling face) is more recognizable and ac-
tually increases the identification rate. We want to go one
step further beyond the visible cues in face expression to re-
cover the elastic strain pattern that might help to reveal the
underlying anatomical individuality.

3. Anatomy-based physical model has been widely used in re-
alistic facial animation and surgery simulation [6, 12, 5].
Essa and Pentland [9] proposed a physical model to repre-
sent facial motion and distinguish face expressions. They
used the model to estimate visual muscle activation and
to generate motion-energy templates for each expression.
However, we are not aware of any study that uses physi-
cal model to compute elastic strain pattern for the purpose
of face recognition. A finite element model based on contin-
uum mechanics enables us to compute the strain map accu-
rately.
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Figure 1. Illustration of masseter muscle [3].

2 Hypothesis: Face Anatomy and Muscle Biome-
chanics

Biometrics refers to the identification of an individual based
on distinctive physiological or behavioral characteristics. In face
recognition, the hypothesis is that each individual has a unique
visible face pattern in terms of shape, color or texture that can
be utilized for recognition. This uniqueness in visible pattern is
certainly related to, and probably determined by, the uniqueness
of the underlying anatomical structure and biomechanical com-
positions, which could also be useful for recognition, if they are
measurable.

Major anatomical units of human face are: bones (skull), mus-
cles, skin, blood vessels and nerves [3]. The use of skull mea-
surement in identification (craniofacial analysis) and its forensic
implications is well documented [4]. But it is doubtful that a
practical biometrics can be derived due to the limitation of spe-
cial imaging modality (X-ray is needed for skull measurement). It
is also difficult to capture facial nerve patterns with current imag-
ing technologies. The blood vessel patterns, however, has been
utilized in both facial thermography and iris-retina scans with the
aid of infrared camera.

Face expression is controlled by muscles and emotional states
that trigger and change the muscle movements, which could be
quantified by the elastic strain pattern. Elastic strain pattern com-
puted from the observed face deformation not only reflects an
individual’s emotional status, but, more importantly, also reveals
the intrinsic muscle properties, and therefore can be utilized for
recognition. This unique strain pattern associated with an indi-
vidual can remain unchanged for a long period of time, although
it is reasonable to expect some variations caused by aging (loss
of elastin fibers and muscle elasticity), injuries and plastic op-
erations. The FACS (Facial Action Coding System) [2] is also
based on the hypothesis that each individual has a unique facial
movement and can be used for identification.

An ideal face model to compute strain pattern should incor-
porate all anatomical details. However, such a full-scale model
would be too expensive to be realistic for face recognition. To
strike a balance between modeling accuracy and computational
efficiency, we have to make a compromise on what to model and
how to model.

Although a whole face contains more information about an in-
dividual, it is more practical to model a portion of face whose
deformation is dominated by one or a few major muscles. We
choose a section that is between the cheek bone and jaw line (side
view) and covered by the masseter muscle (Figure 1). The mas-
seter muscle is a large, thick and roughly rectangular plate that
is responsible for jaw action. We will model its deformation be-
tween two positions, namely a closed mouth and an open mouth.

Masseter muscle is of striated type and located just beneath
the skin tissue, and its contraction has an immediate effect on
skin motion. Therefore, we will not treat skin as a separate func-
tional layer. Instead, we model the deformation of muscle and
skin together as an integrated mechanical unit. This single-layer
model satisfies requirements of face recognition. But two-layer
model may be considered, especially for older people where the
motion of muscle and aged skin are less synchronized (wrinkles).

3 Computational Method

There are four major steps in computing elastic strain pattern:
(1) feature extraction and motion measurement; (2) finite element
construction; (3) strain computation; (4) conversion of strain map
to intensity image.

Feature Extraction and Motion Measurement We first ex-
tract salient points from intensity images and then construct a
polygonal surface using the Delaunay principle. Feature extrac-
tion is based the computation of a gradient matrix within a win-
dow (w):

g =

[

∑w ∂I
∂x

∂I
∂x

∑w ∂I
∂x

∂I
∂y

∑w ∂I
∂y
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∂x

∑w ∂I
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∂I
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]

(1)

where I is image intensity and (x, y) are row and column. The
first derivatives are obtained by convolving intensity image with
the derivative of Gaussian filter (G): ∂I

∂x
= ∂G

∂x
∗I , ∂I

∂y
= ∂G

∂y
∗I .

The coefficients of all pixels inside w are then summed up to pro-
duce the gradient matrix, which has two eigenvalues: (λ1, λ2).
Given a threshold T , satisfaction of condition: min(λ1, λ2) > T ,
suggests that the window contains a feature point. More details
about the method can be found in [10].

Due to the nonrigid nature of face deformation, we presently
establish correspondence between two frames manually to ensure
the quality of displacement vector. The displacement data will be
used in the finite element model to specify the Dirichlet boundary
condition. This manual processing is not new in early face recog-
nition research where eyes and other facial features are manually
located (FERET test [7]). Future work will use an automated cor-
respondence matching method.

Delaunay Meshing and Model Construction We use the De-
launay triangulation to generate an adaptive triangle mesh with a
set of points that are randomly distributed on face images. We
design a simple meshing strategy: (1) select points that defines
the boundary of the region to be modeled; (2) link those bound-
ary points to form a polygon; (3) select the points that are inside
the polygon; (4) generate a triangle mesh that is adaptive to all
the selected points.
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To ensure the mesh quality, we also design a local mesh refine-
ment procedure that detects bad-shaped elements and improves
the initial mesh accordingly: (1) node will be added at the region
of high curvature to increase the accuracy of surface representa-
tion; (2) new node will subdivide the long and thin element into
more regular-shaped element.

Forward Modeling and Strain Computation The deforma-
tion of a solid can be described by a motion equation that is de-
rived from the conservation of momentum:

∇ · σ + ρfb = ρ
∂2

u

∂t2
, (2)

where σ is stress tensor, u is displacement vector, ρ is mass den-
sity, fb is body force and ∇· is divergence operator.

We model face deformation with a linear elastic model using
the generalized Hooke’s law and Cauchy strain tensor:

σ = Ce, (3)

ε =
1

2
[∇u + (∇u)T ], (4)

where e is strain tensor, C is elastic coefficient tensor and ∇ is
gradient operator with respect to displacement vector.

Combining the above equations with inhomogeneous and
isotropic Young’s modulus E and Poisson’s ratio ν, we obtain
the governing equation used in face model:

∇ · [λ(∇ · u)I + G∇u + G(∇u)T ] + ρfb = ρ
∂2

u

∂t2
, (5)

where G and λ are the Lamé constants.
Equation (5) is solved numerically after being discretized over

the Delaunay triangle mesh using the finite element method in
variational formulation [15]. Since we are interested in static
deformation only, the final forward model in the discrete matrix
form becomes:

Ku = F (6)
where K is stiffness matrix and F is the generalized force.

To compute the strain pattern of deformed face, we have
to supplement appropriate boundary condition. We specify the
Dirichlet condition using the measured displacement data on the
feature points. As a result, it becomes an over-specified boundary
value problem of the first kind and can be readily solved using an
iterative numerical solver.

Strain Conversion and PCA Analysis We use the standard
principle component analysis (PCA) [11] for performance assess-
ment. To be compatible with commonly used face recognition
methods that take the intensity images as inputs, we convert the
strain maps into intensity images using a simple linear transfor-
mation:

ex − emin

emax − emin

=
Ix − Imin

Imax − Imin

(7)

where (emax, emin) are the maximum and minimum strain val-
ues for all subjects, ex is the strain value to be converted, Ix is
the converted intensity value. (Imax, Imin) are set to 255 and
0, respectively. Because strain value spans over a large range,

(a) Close mouth (b) Open mouth

(a) Original strain map (b) Converted strain intensity

Figure 2. Strain pattern of a modified face that is
attached with a less stretchable tape, which corre-
sponds to small strain (low intensity).

information may be lost with this linear conversion. More so-
phisticated conversion method will be considered in future inves-
tigations.

Before PCA analysis, all converted strain intensity images are
scaled based on the geometry of facial landmarks (nose, ear,
mouth and jaw line). A rectangle region of the size of 150 by
160 pixels (original face images are 640 by 480 pixels) in the
center of strain intensity image is then chopped out. This rectan-
gle strain image will be used in PCA analysis. (See an example
strain pattern in Figure 2).

4 Experimental Results

Data Set Two side-view images were acquired for each subject
(open-mouth, close-mouth). Range images were also taken with
a Minolta Vivid-900 range scanner to provide 3D data. Two more
images were acquired for each subject under a different illumi-
nation condition. As a result, each subject has 4 images: open-
mouth + bright-light, close-mouth + bright-light, open-mouth +
dark-light, close-mouth + dark-light. The complete data set con-
tains 56 subjects (224 images), from which we selected 27 sub-
jects for the experiments. To study the efficacy of the proposed
method in the presence of modified faces (tissue properties are
changed due to surgery, trauma or burn, either intentionally or
accidentally), a transparent rectangular tape was attached on the
face of 7 subjects. The tape is less stretchable and thus has the
same effect of modified faces and results in abnormal strain pat-
terns. We performed 4 tests with different gallery sizes (Table
1). The results are presented with the standard cumulative match
characteristic (CMC) curves.

Results with Regular and Modified Faces The purpose of
Test-1 is to investigate whether elastic strain pattern has enough
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Table 1. Data Set
Gallery Probe

Test-1 12 subjects of regular faces 27 mixed subjects
Test-2 7 subjects of modified faces 27 mixed subjects
Test-3 15 subjects with bright light 27 mixed subjects
Test-4 15 subjects with darker light 27 mixed subjects

Figure 3. CMCs for regular and modified faces.

discrimination power for recognition of regular faces. Test-2 is to
understand whether the modified faces are more difficult to rec-
ognize or more distinguishable due to an unusual strain pattern.

CMC curves of two tests are shown in Figure 3. The rank-one
recognition score for regular faces is 73.7%. Although the results
were obtained with a relatively small data set, the performance is
still quite promising. The data set does not contain frontal views
that are commonly used in face recognition test.

As expected, the experiment using modified faces shows a bet-
ter performance with the rank-one score of 85.8%. This result
suggests that a person who changed his/her appearance by plas-
tic surgery or other approaches actually has a better chance to be
detected because medical surgery cause property changes of fa-
cial tissues, which is hard to detect using the methods that rely on
visible cues only.

Results with Illumination Changes Strain tensor can be
roughly viewed as the derivative of displacement vector. Face
recognition using strain pattern may be less sensitive to the illu-
mination change, as long as it does not affect the image quality,
and hence displacement quality, to a degree that the information
contained in strain pattern is no longer good enough for recogni-
tion. To verify this, we carried out two tests. Test-3 has a gallery
of 15 subject whose images were taken under brighter condition,
while the gallery of Test-4 has 15 subjects whose image were
taken with a darker light. Each gallery contains 5 subjects of
modified faces (randomly picked) and 10 subjects of regular faces
(randomly picked).

Figure 4 shows the CMC curves. At least for this experiment
setting, no significant difference is observed. Since we have not
yet experimented with larger illumination variations, the question
whether illumination is a strong factor in a fully automated ap-
proach still remains unanswered.

Figure 4. CMCs with illumination changes.

5 Conclusions

We present a face recognition method that utilizes the elas-
tic strain pattern computed from the observed face motion. The
rational for the new biometrics is that the underlying anatomi-
cal structure is unique for each individual and this physiologi-
cal invariant can be explored for face recognition. The proposed
method has the advantage that recognition reaches beyond the
visible faces that are usually seen and used by other face recog-
nition methods, which can be confused by various camouflage
using plastic surgery or makeup.

Several issues that need to be addressed in future investiga-
tions are: (1) a larger data set is needed to thoroughly evaluate
the performance; (2) correspondence matching needs to be auto-
mated. Optical flow and motion measurement in video sequence
also can be considered; (4) using strain pattern on the whole face
rather than a portion of face; (5) a comparative study with other
methods is necessary. Fully aware of its limitation, we do not
foresee that the method can solve the face recognition problem.
Instead, we envision that it has a great chance to enhance the ex-
isting methods when used collaboratively, because it targets com-
pletely different facial attributes than current face biometrics.

References

[1] R. Chelleppa, C. L. Wilson and S. Sirobey, ”Human and machine recog-
nition of faces : A survey” Proceedings of the IEEE, vol. 83, no. 5, pp.
705-740, 1995.

[2] P. Ekman and W. Friesen, Facial Action Coding System, Consulting Psy-
chologists Press, Inc., 1978.

[3] L. A. Fried, Anatomy of the Head, Neck, Face, and Jaws, Henry Kimpton
Publishers, London, 2nd ed., 1980.

[4] M. Y. Iscan, and R. P. Helmer (Editors) Forensic Analysis of the Skull:
Craniofacial Analysis, Reconstruction, and Identification, New York, NY.
Wiley-Liss, c1993.

[5] R. M. Koch, M. H. Gross, F. R. Carls, D. F. von Buren, G. Fankhauser,
and Y. I. H. Parish, “Simulating facial surgery using finite element mod-
els,” Proceedings of SIGGRAPH’s 96, pp. 421-428, 1996.

[6] F. I. Parke, and K. Waters, Computer Facial Animation, A.K. Peters,
Wellesley, Massachusetts, 1997.

[7] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, ”The FERET Evaluation
Methodology for Face-Recognition Algorithms” IEEE Trans. on Pattern
Ana. and Machine Intell., 22(10), pp. 1090-1104, 2000.

4



[8] P.J. Phillips, P. Grother, R.J Micheals, D.M. Blackburn, E Tabassi, and
J.M. Bone, “Face Recognition Vendor Test (FRVT) 2002: Overview and
Summary”, http://www.frvt.org/FRVT2002/documents.htm, 2003.

[9] M. Shah and R. Jain, Motion-Based Recognition, Academic Publishers,
Netherlands, 1997.

[10] J. Shi and C. Tomasi, “Good features to track,” IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 593-600, June 1994.

[11] M. Turk, and A. Pentland, “Eigenfaces for recognition,” Journal of Cog-
nitive Neuroscience, (3)1, pp. 71-86, 1991.

[12] D. Terzopoulos, and K. Waters, “Analysis and synthesis of facial image
sequences using physical and anatomical models,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 15(6), pp. 569-579, 1993.

[13] Y. Yacoob, H. Lam, and L. S. Davis, “Recognizing faces showing expres-
sions” International Workshop on Automatic Face and Gesture Recogni-
tion, Zurich, pp. 278-283, 1995.

[14] Y. Yacoob, and L. S. Davis, “Smiling faces are better for face recogni-
tion” International Conference on Face Recognition and Gesture Analy-
sis, Washington-DC, pp. 52-57, 2002.

[15] O. C. Zienkiewicz, The Finite Element Method, 3rd edition, McGraw-
Hill, 1977.

5


