Probabilistic classification between foreground objects and background | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Tuesday, 25 February, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (1800-2200 UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Probabilistic classification between foreground objects and background


Abstract:

Tracking of deformable objects like humans is a basic operation in many surveillance applications. Objects are detected as they enter the field of view of the camera and ...Show More

Abstract:

Tracking of deformable objects like humans is a basic operation in many surveillance applications. Objects are detected as they enter the field of view of the camera and they are then tracked during the time they are visible. A problem with tracking deformable objects is that the shape of the object should be re-estimated for each frame. We propose a probabilistic framework combining object detection, tracking and shape deformation. We make use of the probabilities that a pixel belongs to the background, a new object or any of the known objects. Instead of using arbitrary thresholds for deciding to which class the pixel should be assigned we assign the pixel based on the Bayes criterion. Preliminary experiments show the classification error drops to about half the error of traditional approaches.
Date of Conference: 26-26 August 2004
Date Added to IEEE Xplore: 20 September 2004
Print ISBN:0-7695-2128-2
Print ISSN: 1051-4651
Conference Location: Cambridge, UK

References

References is not available for this document.