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Abstract

In this paper we try to characterize a set of classification

problems. For this, we use the disagreement between a

set of standard classifiers. The disagreement patterns do

not only point towards different types of classification

problems, but also indicate the novelty and the useful-

ness of a classifier with respect to a set of classification

problems and classifiers. Some experiments show when

known classification problems become unknown after

changing their feature size or their training set size.

1. Introduction

In designing effective procedures for building pattern

recognition systems it is essential to have some knowl-

edge on the set of classification problems one may en-

counter. As argued by Wolpert [11] , it is not expected to

reach any generalization in training classifiers if all pos-

sible classification problems are equally probable. The

study of Vapnik on the complexity of classifiers [10]

showed that very large training sets are needed to guar-

antee a reasonable performance if one considers all pos-

sible relabelings of a given dataset as equally probable.

Such studies show that in building classifiers, we

should already have some prior knowledge of the prob-

lems that have to be solved by these tools. A very com-

mon, often implicitly made assumption on the set of

problems is that they obey the so-called ‘compactness

hypothesis’ [1]: each classification problem is the result

of a representation of real world objects, such that simi-

lar objects have similar representations [3]. The above

mentioned studies by Wolpert and Vapnik indicate the

necessity of such an assumption.

A general approach to the characterization of classi-

fication problems is difficult. Still it is important, as it

may be a first step to describe the set of problems en-

countered in practice. Studies by Ho et al., e.g. [5] focus

on the problem (data) complexity as a natural possible

attribute. It appears that this is still ill-defined and there

are numerous ways to measure the problem complexity.

In this paper our point of view is actually that the

tools used to solve a classification problem provide its

natural characterization. The performances of these

tools may give a first indication how to solve the prob-

lem, as they tell whether the chosen classifiers are ap-

propriate. However, it may be possible that specific, ad-

vanced tools are needed and that we are not in the

position of trying them, since this would require an ex-

haustive search over all possible solutions to tackle the

problem. So, we need some problem characteristics to

assist us in searching for the appropriate tools. In order

to define such characteristics we investigate here the dif-

ferences in classification results (and not just in absolute

performance) between individual classifiers, measured

by their disagreements. A classification problem is rep-

resented by the disagreement pattern between a set of

standard classifiers. 

Once problems are characterized, they can be com-

pared. We will illustrate how this may be done. If such a

technique is fully developed we might be able to judge

automatically whether a new classification problem is

similar to a standard problem (e.g. related to a specific

approach). This will give us a first indication on how it

may be tackled. It may also be concluded that the prob-

lem does not fit to the standard set and that a novel pro-

cedure for its investigation is desirable.

We will present a first analysis in the direction

sketched above. In section 2, a possible set of base clas-

sifiers will be presented. How their disagreement may

be used to represent a problem is discussed in section 3.

A set of classification problems is defined in section 4.

This set has to be enlarged and purified. How this may

be analyzed is presented in section 5. Some additional

experiments are discussed in section 6.

2. The set of classifiers

In selection of a basic set of classifiers for arbitrary

problems it should be realized that for every classifier a
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problem may be defined for which it is the best. This is

the consequence of the fact that a classifier is based on

some model or data assumptions. If they are fulfilled

and all other assumptions made by other classifiers do

not apply then this particular classifier will yield the

best performance. So all classifiers are admissible. As a

consequence we cannot neglect any classifier as it will

always be better than all other ones for some problem.

What may happen, however, is that some classifiers

are not of significant importance for the set of problems

of interest. Here we encounter an essential difficulty in

the analysis. We aim to characterize problems by classi-

fiers, but we can only decide about the classifiers to be

used once we have analyzed the set of problems of in-

terest and we need the classifiers to do this.

In order to bootstrap this vicious circle, we may start

with an initial, small set of classifiers for which we are

convinced that they show considerable differences over

interesting problems. Other classifiers can later be

added when their contribution appears to be of help, i.e.

if they show differences between problems that have

not been distinguished before.

As an initial classifier set we have chosen the follow-

ing 13 classifiers, see also [6]:

NMC: the nearest mean classifier,

Fisher: Fisher’s linear discriminant,

UNormalBC: the Bayes classifier assuming uncorre-

lated normal densities,

NormalBC: the Bayes classifiers assuming arbitrary

normal densities,

NaiveBC: the naive Bayes classifier based on 10-bin

histograms per feature,

ParzenC: the Parzen classifier, Using a leave-one-out

optimization of the smoothing parameter.

1-NN: the one nearest neighbor rule,

k-NN: the k-nearest neighbor rule. The value of k is

optimised for the leave-one-out classification error,

LogC: the logistic classifier,

SVC-1: the support vector classifier using a linear ker-

nel, and with regularization parameter c = 1,

SVC-2: the support vector classifier using a quadratic

kernel, and with regularization parameter c = 1

LM-NeurC: a neural net with one hidden layer with 5

neurons, trained by the Levenberg-Marquardt rule,

CART: A CART like decision tree [2], maximizing the

purity and using early pruning [9],

We used PRTools4 [4] for experiments.

3. The disagreement between classifiers

Different classification rules usually give rise to dif-

ferent classifiers. One way to measure the difference be-

tween two classifiers C1 and C2 trained on a classifica-

tion problem Pj (j = 1 ,..., N; N is the size of the set of

problems) is the disagreement dj(C1,C2): the probabili-

ty that an arbitrary object  gets different labels

assigned by the classifiers C1 and C2 trained on the

problem Pj:

dj(C1,C2) = Prob(C1(x) ~= C2(x) | ) (1)

Ci(x) returns the label for object x according to classi-

fier Ci. M classifiers constitute an M x M disagreement

matrix  for problem Pj, with elements (m,n) =

dj(Cm,Cn). In [7] it is discussed how such a dissimilarity

matrix can be visualized by an embedding it into a 2D

Euclidean space. The so-called Classifier Projection

Space (CPS) shows the individual classifiers as points

such that the realized 2D Euclidean distances approxi-

mate the actual disagreements, see fig 1.

The disagreement measure is metric, yet not Euclid-

ean. As a consequence, there does not exist a Euclidean

space that perfectly embeds a given disagreement ma-

trix. The embedding shown in fig. 1, however, still ex-

plains about 75% of the squared classifier disagree-

ments by the squared Euclidean distances. In this figure

some classifier and problem characteristics can be rec-

ognized: the similarities between the linear classifiers

NMC, Fisher, SVC-1 and LogC, as well as, between the

nonparametric procedures 1-NN, k-NN and ParzenC.

As the true covariance matrices in the Highleyman clas-

sification problem are uncorrelated, the normal densi-

ties Bayes classifiers assuming equal or different cova-

riance matrices, UNormalBC and NormalBC, are very

close. The other quadratic classifier, SVC-2, is remote

from them. Also the neural net, LM-NeurC and the

Naive Bayes Classifier, NaiveBC, show their own, dif-

ferent characteristics. 

4. The set of problems

We now define a set of 18 2-class problems that will

be related by their disagreement matrices, see table 1.

Some of them (‘*’) are artificial, available in PRTools

x Pj

x Pj

Dj

c
Dj

c

Fig. 1. In the CPS the classifiers are represented such that 

the visual distances optimally preserve the disagreements. 

This is the result for the Highleyman problem with 10+10 

objects (see section 4)
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[4], others are taken from the UCI repository [12]. The

Banana dataset shows two 2D banana shaped classes.

The NCorrX datasets are based on highly correlated X-

dimensional normal distributions with equal covariance

matrices. Digit38 consists of the digits 3 and 8 of the

multi-feature set (mfeat) dataset in the UCI repository.

We used the Karhunen-Loève moments (Digit38-kar)

and the Zernike moments (Digit38-zer). In table 1 the

dimensionalities and sample sizes are listed. The col-

umns R and B will be explained later.

For each of the problems Pj (j=1,...,18) the disagree-

ment matrix  was estimated. For the artificial datasets

(j=1,...,8) a test set of 1000 objects per class was used.

For the real world problems 10-fold cross-validation

was applied. Note that by both systems, a random com-

ponent in the disagreement estimation is introduced: the

estimation is not a unique function of the dataset, but

depends on the seed of a random generator.

5. Problem characterization by classifiers

To compare the full disagreement matrices, a dissim-

ilarity measure between the problems is needed. As

they all have the same size (M x M, with M the number

of classifiers) and their values are probability estimates

on the [0,1] interval, no normalization is required. To

compare the problems Pr and Ps we rather arbitrarily

used

(2)

i.e. the sum of all absolute differences between the clas-

sifier disagreements, to define the problem dissimilarity

matrix . Similar to the CPS a Problem Projection

Space (PPS) can be defined. Fig. 2 shows a scatter plot

of the problems of the first two dimensions of the PPS.

We will now face the question how it can be detected

whether a new problem c fits in a set of problems repre-

sented by . A possible way to answer this is to use

novelty detectors or one-class classifiers. To that end, a

compact description of  has to be derived, such that

for a new problem Pk, represented by its disagreement

matrix  it can be established whether it fits to this

description or or it does not.

Since , like , is based on non-Euclidean dissim-

ilarity measures, embedding of the set of problems in an

Euclidean space will cause difficulties, similar to the

embedding discussed in section 3. As a consequence,

density estimators or support vector machines using

Mercer kernels cannot be used, unless the dissimilarity

data is transformed to be Euclidean. Here we want to

study the use of the original . In [8] a one-class clas-

sifier was proposed for general dissimilarity data based

on a linear programming technique which we will apply

here to define a compact description of . 

Let  = (k,:) be the vector of dissimilarities of a

problem Pk with disagreement matrix  to all known

problems in our standard set. Pk can be inside or outside

this set. The classifier W( ) is now defined as

, (3)

if ,  is accepted, otherwise rejected w.r.t.

the class of objects (problems) defined by . The clas-

sifier  is optimized by a linear programming

procedure in which w0 is maximized subject to

(4)

This procedure results in a number of zero weights

wj = 0. The corresponding objects (in our case prob-

lems) are therefore not needed for the generalization.

Table 1    The set of datasets

Dataset name #features #objects R B

Highleyman-20* 2 10 + 10

Highleyman-100* 2 50 + 50

Banana-20* 2 10 + 10

Banana-100* 2 50 + 50 X

NCorr2-20* 2 10 + 10

NCorr2-100* 2 50 + 50

NCorr5-100* 5 50 + 50

NCorr20-100* 20 50 + 50

Spirals* 2 97 + 97 X X

Sonar 60 97+ 111

Biomed 5 127 + 67

Diabetes 8 500 + 268 X

Auto-mpg 6 229 + 169

Ionosphere 34 225 + 126

Liver 6 145 + 200 X

Breast 9 444 + 239

Digit38-kar 64 200 + 200 X

Digit38-zer 47 200 + 200 X X

Dj
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Fig. 2. In the Problem Projection Space (PPS) the datasets 

are represented such that their visual distances optimally 

agree with their dissimilarities.
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We may say that the ‘problem space’ is defined by just

the problems for which wj > 0. We call them the repre-

sentation objects. Other, or the same objects (problems)

are on the boundary of this description. They corre-

spond to objects that would be rejected in a leave-one-

out approach: they do not belong to the class defined by

the other n-1 objects. 

In our example, the representation set of problems

appears to consist of four datasets, indicated in column

R of table 1. This implies that the other datasets are not

needed for building the classifier. New classification

problems should be compared by (3) to just these ones.

The four boundary cases we found (that were reject-

ed by the leave-one-out test), are indicated in table 1 in

column B. They are in one way or another the most ex-

treme. Note that Spirals and Digits38-zer belong to both

sets. They are in fact rather atypical: e.g. the Spiral

problem is a structured, noise free 2D dataset and the

Zernike moments have very different scales.

6. Experiments

The one-class classifier found above was also used

for classifying a series of new or modified problems.

For the artificial datasets we tried various sizes of the

training set or a range of dimensionalities. This was re-

peated 10 times to test the stability. An example is given

in fig. 3 showing the frequency of accepting the NCor-

rX-20 dataset to the set of standard problems for various

feature sizes. This shows a deteriorating acceptance as

a ‘standard problem’ for feature sizes larger than 5. 

In a second series of experiments we modified some

of the real world problems by decreasing their dataset

sizes. In table 2 we show for three problems whether

they are still accepted as one of the ‘standard’ problems

or are rejected. Sampling fractions are listed above the

columns. The ’Liver’ dataset, which is a boundary case,

is directly rejected, while ‘Sonar’ is accepted to 50% of

its size and ‘Biomed’ even to 35%.

7. Discussion

We showed that it is possible to use a standard set of

classification problems for the construction of a rule

that decides about the similarity of new problems to the

existing ones. This is based on the disagreements be-

tween a set of classifiers. They thereby influence to

what extent problems can be distinguished. It has to be

investigated whether other, possibly more advanced

classifiers, can be used for that purpose.

If it is possible to group classification problems in a

consistent way, this may be of a great help to select the

appropriate tools for solving new problems. In this

paper we just sketch this perspective. We admit that still

much has to be investigated about the proposed proce-

dure, e.g. its consistency and its stability, and also about

the selection of the tools for new problems. Neverthe-

less, we judge the preliminary results as encouraging.
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Table 2    Classification of sampled datasets
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Liver accept reject reject reject reject reject

Fig. 3. The frequency in 10 experiments that the NCorrX-

20 dataset is accepted as a ‘standard problem’ for various 

feature sizes.
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