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Abstract 
 
Clustering ensembles combine multiple partitions of the 
given data into a single clustering solution of better 
quality. Inspired by the success of supervised boosting 
algorithms, we devise an adaptive scheme for integration 
of multiple non-independent clusterings. Individual parti-
tions in the ensemble are sequentially generated by clus-
tering specially selected subsamples of the given data set. 
The sampling probability for each data point dynamically 
depends on the consistency of its previous assignments in 
the ensemble. New subsamples are drawn to increasingly 
focus on the problematic regions of the input feature 
space. A measure of a data point’s clustering consistency 
is defined to guide this adaptation. An empirical study 
compares the performance of adaptive and regular clus-
tering ensembles using different consensus functions on a 
number of data sets. Experimental results demonstrate 
improved accuracy for some clustering structures. 
 

1.  Introduction 
 
Exploratory data analysis and, in particularly, data 

clustering can significantly benefit from combining multi-
ple data partitions. Clustering ensembles can offer better 
solutions in terms of robustness, novelty and stability [1, 
2, 3]. Moreover, their parallelization capabilities can be 
naturally used in distributed data mining.  

Combination of clusterings is a more challenging task 
than combination of supervised classifications. In the 
absence of labeled training data, we face a difficult corre-
spondence problem between cluster labels in different 
partitions of an ensemble. Recent studies [4] have demon-
strated that consensus clustering can be found using 
graph-based, statistical or information-theoretic methods 
without explicitly solving the label correspondence prob-
lem. Other empirical consensus functions were also con-
sidered in [5, 6, 7]. However, the problem of consensus 
clustering is known to be NP complete [8]. 

Beside the consensus function, clustering ensembles 
need a partition generation procedure. Several methods 
are known to create partitions for clustering ensembles. 
For example, one can use: (i) different regular clustering 

algorithms [2], (ii) different initializations, parameter 
values or built-in randomness of a specific clustering 
algorithm [1], (iii) weak clustering algorithms [3], (iv) 
data resampling [5, 6, 9]. All these methods generate 
ensemble partitions independently, in a sense that the 
probability to obtain the ensemble consisting of H parti-
tions {π1, π2,…,πH} of the given data D can be factorized: 
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Hence, the increased efficacy of an ensemble is mostly 
attributed to the number of identically distributed and 
independent partitions, assuming that a partition of data is 
treated as a random variable π. Even when the clusterings 
are generated sequentially, it is traditionally done without 
considering previously produced clusterings:  
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However, similar to the ensembles of supervised classifi-
ers using boosting algorithms [10], a more accurate con-
sensus clustering can be obtained if contributing partitions 
take into account the solutions found so far. Unfortu-
nately, it is not possible to mechanically apply the deci-
sion fusion algorithms from supervised (classification) to 
unsupervised (clustering) domain. New objective func-
tions for guiding partition generation and the subsequent 
decision integration process are necessary. 

We propose an adaptive approach to partition genera-
tion that makes use of clustering history. In clustering, 
ground truth in the form of class labels is not available. 
Therefore, we need an alternative measure of performance 
for an ensemble of partitions. We determine clustering 
consistency for data points by evaluating a history of 
cluster assignments for each data point within the gener-
ated sequence of partitions. Clustering consistency serves 
for adapting the data sampling to the current state of an 
ensemble during partition generation. The goal of adapta-
tion is to improve confidence in cluster assignments by 
concentrating sampling distribution on problematic re-
gions of the feature space. In other words, by focusing 
attention on the data points with the least consistent clus-
tering assignments, one can better approximate (indi-
rectly) the inter-cluster boundaries. To achieve this goal, 
we address the problems related to estimation of cluster-
ing consistency (Section 2) and of finding a consensus 



clustering. Finally, we evaluate the performance of adap-
tive clustering ensembles (Section 3) on a number of real-
world and artificial data sets in comparison with more 
conventional clustering ensembles of bootstrap partitions 
[5,6,9]. 

  
2.  Adaptive sampling and clustering 
 

While there are many ways to construct diverse data 
partitions for an ensemble, not all of them easily general-
ize to adaptive clustering. Our approach extends the 
studies of ensembles whose partitions are generated via 
data resampling [5, 6]. Though, intuitively, clustering 
ensembles generated by other methods can be also 
boosted. It was shown [9] that small subsamples generally 
suffice to represent the structure of the entire data set in 
the framework of clustering ensembles. Subsamples of 
small size can reduce computational cost for many ex-
ploratory data mining tasks with distributed sources of 
data [11]. 

 We begin with a formalization of clustering combina-
tion problem. Let D be a data set of N points that is avail-
able either as N×d pattern matrix in d-dimensional space 
or N×N dissimilarity matrix. Suppose that X = { X1,…,XH} 
is a set of H subsamples of size N drawn with replacement 
from the given data D. A chosen clustering algorithm is 
run on each of the samples in X that results in H partitions 
Π={π1, π2,…, πH}. Each component partition in Π is a set 
of non-overlapping and exhaustive clusters with πi = 
{
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the number of clusters in the i-th partition.  
 The problem of combining partitions is to find a new 

partition σ ={C1,…,CM} of the entire data set D given the 
partitions in Π, such that the data points in a cluster of σ 
are more similar to each other than to points in different 
clusters of σ. We assume that the number of clusters M in 
the consensus clustering is predefined and can be different 
from the number of clusters k in the ensemble partitions. 
In order to find this target partition σ, one needs a consen-
sus function utilizing information from the partitions {πi}. 
Several known consensus functions [1, 2, 3] can be em-
ployed to map a given set of partitions Π={π1, π2,…, πH} 

to a target partition σ  in our study.  
The adaptive partition generation mechanism is aimed 

at reducing the variance of inter-class decision bounda-
ries. Unlike the regular bootstrap method that draws 
subsamples uniformly from a given data set, adaptive 
sampling favors points from regions close to the decision 
boundaries. At the same time, the points located far from 
the boundary regions will be sampled less frequently. It is 
instructive to consider a simple example that shows the 
difference between ensembles of bootstrap partitions with 
and without the weighted sampling. Figure 1 shows how 
different decision boundaries can separate two natural 
classes depending on the sampling probabilities. Here we 
assume that the k-means clustering algorithm is applied to 
the subsamples. Initially, all the data points have the same 

weight, namely, the sampling probability 1
Nip = , 

i∈[1,…,N]. Clearly, the main contribution to the cluster-
ing error is due to the sampling variation that causes 
inaccurate inter-cluster boundary. Solution variance can 
be significantly reduced if sampling is increasingly con-
centrated only on the subset of objects at iterations t2 > t1 > 
t0, as demonstrated in Figure 1.  

 The key issue in the design of the adaptation mecha-
nism is the updating of probabilities. We have to decide 
how and which data points should be sampled as we 
collect more and more clusterings in the ensemble. A 
consensus function based on the co-association values [1] 
provides the necessary guidelines for adjustments of 
sampling probabilities. Remember that the co-association 
similarity between two data points x and y is defined as 
the number of clusters shared by these points in the parti-
tions of an ensemble Π: 

A consensus clustering can be found by using an agglom-
erative clustering algorithm (e.g., single linkage) applied 
to such a co-association matrix constructed from all the 
points. The quality of the consensus solution depends on 
the accuracy of similarity values as estimated by the co-
association values. The least reliable co-association values 
come from the points located in the problematic areas of 
the feature space. Therefore, our adaptive strategy is to 
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increase the sampling probability for such points as we 
proceed with the generation of different partitions in the 
ensemble. 

The sampling probability can be adjusted not only by 
analyzing the co-association matrix, which is of quadratic 
complexity O(N2), but also by applying the less expensive 
O(N+K3) estimation of clustering consistency for the data 
points. Again, the motivation is that the points with the 
least stable cluster assignments, namely those that fre-
quently change the cluster they are assigned to, require 
increased presence in the data subsamples. In this case, a 
label correspondence problem must be approximately 
solved to obtain the same labeling of clusters throughout 
the ensemble’s partitions. By default, the cluster labels in 
different partitions are arbitrary. To make a correspon-
dence problem more tractable, one needs to re-label each 
partition in the ensemble using some fixed reference 
partition. Table 1 illustrates how 4 different partitions of 
twelve points can be re-labeled using the first partition as 
a reference.  

At the (t+1)-st iteration, when some t different clusterings 
are already included in the ensemble, we use the Hungar-
ian algorithm for minimal weight bipartite matching 
problem in order to re-label the (t+1)st partition.  

As an outcome of the re-labeling procedure, we can 
compute the consistency index of clustering for each data 
point. Clustering consistency index CI at iteration t for a 
point x is defined as the ratio of the maximal number of 
times the object is assigned in a certain cluster to the total 
number of partitions: 
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The values of consistency indices are shown in Table 1 
after four partitions were generated and re-labeled. We 
should note that clustering of subsamples of the data set D 
does not provide the labels for the objects missing (not 
drawn) in some subsamples. In this situation, the summa-
tion in Eq. (4) skips the terms containing the missing 

labels. 
The clustering consistency index of a point can be di-

rectly used to compute its sampling probability. In par-
ticular, the probability value is adjusted at each iteration 
as follows:  

 1( ) ( ( ) 1 ( ))t tp x Z p x CI xα+ = + − ,  (5) 

where α is a discount constant for the current sampling 
probability and Z is a normalization factor. The discount 
constant was set to α=0.3 in our experiments. The pro-
posed clustering ensemble algorithm is summarized in 
pseudocode below: 
 

InputInputInputInput:  D – data set of N  points, 
H –  number of partitions to be combined 
M – number of clusters in the consensus partition σ, 
K – number of clusters in the partitions of the ensemble,  
Γ –  chosen  consensus function operating on cluster labels  
p – sampling probabilities (initialized to 1/N for all the points) 
Reference Partition  ← k-means(D) 
forforforfor  i=1 to H 
Draw a subsample Xi from D using sampling probabilities p 
Cluster the sample Xi: π(i) ← k-means(Xi) 
Re-label partition π(i) using the reference partition 
Compute the consistency indices for the data points in D 
Adjust the sampling probabilities p 

endendendend    
Apply consensus function Γ to ensemble Π to find the partition σ 
Validate the target partition σ  (optional) 
returnreturnreturnreturn σ   // consensus partition 
 

3.  Empirical study and discussion 
 

The experiments were conducted on artificial and real-
world data sets (“Galaxy”, “half-rings”, “wine”, “3-
gaussian”, “Iris”, “LON”), with known cluster labels, to 
validate the accuracy of consensus partition. A compari-
son of the proposed adaptive and previous non-adaptive 
[9] ensemble is the primary goal of the experiments. We 
evaluated the performance of the clustering ensemble 
algorithms by matching the detected and the known parti-
tions of the datasets. The best possible matching of clus-
ters provides a measure of performance expressed as the 
misassignment rate. To determine the clustering error, one 
needs to solve the correspondence problem between the 
labels of known and derived clusters. Again, the Hungar-
ian algorithm was used for this purpose. The k-means 
algorithm was used to generate the partitions of samples 
of size N drawn with replacement, similar to bootstrap, 
albeit with dynamic sampling probability. Each experi-
ment was repeated 20 times and average values of error 
(misassignment) rate are shown in Figure 2.  

Consensus clustering was obtained by four different 
consensus functions: hypergraph-based MCLA and CSPA 
algorithms [2], quadratic mutual information [3] and EM 
algorithm based on mixture model [4]. However, due to 
space limitations, we report only the key findings here. 
The main observation is that adaptive ensembles slightly 

Table 1: Consistent re-labeling of 4  partitions of 12 objects.

π1 π2 π3 π4 π1' π2' π3' π4' Consistency

x1 2 B X α 2 1 2 1 0.5

x2 2 A X α 2 2 2 1 0.75

x3 2 A Y β 2 2 1 2 0.75

x4 2 B X β 2 1 2 2 0.75

x5 1 A X β 1 2 2 2 0.75

x6 2 A Y β 2 2 1 2 0.75

x7 2 B X α 2 1 2 1 0.5

x8 1 B Y α 1 1 1 1 1

x9 1 B Y β 1 1 1 2 0.75

x10 1 A Y α 1 2 1 1 0.75

x11 2 B Y α 2 1 1 1 0.75

x12 1 B Y α 1 1 1 1 1



outperform the regular sampling schemes on most bench-
marks. Typically, the clustering error decreased by 1-5%. 
Accuracy improvement depends on the number of clusters 
in the ensemble partitions (K). Generally, the adaptive 
ensembles were superior for values of K larger than the 
target number of clusters, M, by 1or 2. With either too 
small or too large a value of K, the performance of adap-
tive ensembles was less robust and occasionally worse 
than corresponding non-adaptive algorithms. A simple 
inspection of probability values always confirmed the 
expectation that points with large clustering uncertainty 
are drawn more frequently. 

Most significant progress was detected when combina-
tion consisted of 25-75 partitions. Large numbers of 
partitions (H>75) almost never lead to further improve-
ment in clustering accuracy. Moreover, for H>125 we 
often observed increased error rates (except for the hyper-
graph-based consensus functions), due to the increase in 
complexity of the consensus model and in the number of 
model parameters requiring estimation. 

To summarize, we have extended clustering ensemble 
framework by adaptive data sampling mechanism for 
generation of partitions. We dynamically update sampling 
probability to focus on more uncertain and problematic 
points by on-the-fly computation of clustering consis-
tency. Empirical results demonstrate improved clustering 
accuracy and faster convergence as a function of the 
number of partitions in the ensemble. 
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