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Abstract

Clustering ensembles combine multiple partitiongthef
given data into a single clustering solution of tbet
quality. Inspired by the success of supervised thaps
algorithms, we devise an adaptive scheme for iat#yr
of multiple non-independent clusterings. Individpaltti-
tions in the ensemble are sequentially generatedIln
tering specially selected subsamples of the givea set.
The sampling probability for each data point dyneatly
depends on the consistency of its previous assigtsnie
the ensemble. New subsamples are drawn to incrglgsin
focus on the problematic regions of the input featu
space. A measure of a data point’s clustering iescy
is defined to guide this adaptation. An empiricaldy
compares the performance of adaptive and regulas-cl
tering ensembles using different consensus furetona
number of data sets. Experimental results demotgstra
improved accuracy for some clustering structures.

1. Introduction

Exploratory data analysis and, in particularly, adat
clustering can significantly benefit from combiningulti-
ple data partitions. Clustering ensembles can dfédter
solutions in terms of robustness, novelty and BtaijlL,

2, 3]. Moreover, their parallelization capabilitiean be
naturally used in distributed data mining.

Combination of clusterings is a more challengirgkta
than combination of supervised classifications. tie
absence of labeled training data, we face a difficorre-
spondence problem between cluster labels in differe
partitions of an ensemble. Recent studies [4] ltwraon-
strated that consensus clustering can be foundgusin
graph-based, statistical or information-theoretietmds
without explicitly solving the label corresponderm®b-
lem. Other empirical consensus functions were atso
sidered in [5, 6, 7]. However, the problem of corses
clustering is known to be NP complete [8].

Beside the consensus function, clustering ensemble
need a partition generation procedure. Several gdsth
are known to create partitions for clustering ertdem
For example, one can use: (i) different regulastering
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algorithms [2], (ii) different initializations, pameter
values or built-in randomness of a specific clustgr
algorithm [1], (iii) weak clustering algorithms [3]iv)
data resampling [5, 6, 9]. All these methods gerera
ensemble partitions independently, in a sense timat
probability to obtain the ensemble consistingHoparti-
tions {7z, 73,...,71;} of the given datd can be factorized:

H
PU{7% 7y-...78,}1 D) =[] M| D) (1)
t=
Hence, the increased efficacy of an ensemble iglynos
attributed to the number of identically distributedd
independent partitions, assuming that a partitiodata is
treated as a random varialbsieEven when the clusterings
are generated sequentially, it is traditionally elevithout

considering previously produced clusterings:

P | 74, 7T 5,70 D)= PT D) @)
However, similar to the ensembles of supervisedsifia
ers using boosting algorithms [10], a more accucate
sensus clustering can be obtained if contributiagittons
take into account the solutions found so far. Unfor
nately, it is not possible to mechanically applg theci-
sion fusion algorithms from supervised (classifima} to
unsupervised (clustering) domain. New objectivecfun
tions for guiding partition generation and the sdagent
decision integration process are necessary.

We propose an adaptive approach to partition genera
tion that makes use of clustering history. In @usig,
ground truth in the form of class labels is notikmxe.
Therefore, we need an alternative measure of padioce
for an ensemble of partitions. We determine clusger
consistency for data points by evaluating a histofy
cluster assignments for each data point withingéeer-
ated sequence of partitions. Clustering consistasecyes
for adapting the data sampling to the current stditan
ensemble during partition generation. The goaldafpda-
tion is to improve confidence in cluster assignraey
concentrating sampling distribution on problemate
gions of the feature space. In other words, by oy
attention on the data points with the least coeststlus-

%ering assignments, one can better approximatei- (ind

rectly) the inter-cluster boundaries. To achievie tjoal,
we address the problems related to estimation usftet-
ing consistency (Section 2) and of finding a cossen
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Figure 1. Two possible decision boundaries for a 2-cluster data set. Sampling probabilities of data points are indicated
by gray level intensity at different iterations (ip < t; < t,) of the adaptive sampling. True components in the 2-class mix-

ture are shown as circles and triangles.

clustering. Finally, we evaluate the performanceddp-
tive clustering ensembles (Section 3) on a humbegal-
world and artificial data sets in comparison witlore
conventional clustering ensembles of bootstrapitjmars
[5,6,9].

2. Adaptive sampling and clustering

to a target partitiom in our study.

The adaptive partition generation mechanism is dime
at reducing the variance of inter-class decisionnioa-
ries. Unlike the regular bootstrap method that draw
subsamples uniformly from a given data set, adaptiv
sampling favors points from regions close to theisien
boundaries. At the same time, the points locatedrdfa
the boundary regions will be sampled less freqyetttis

While there are many ways to construct diverse datajpstructive to consider a simple example that shtves

partitions for an ensemble, not all of them eagiéyeral-
ize to adaptive clustering. Our approach extends th
studies of ensembles whose partitions are generaged
data resampling [5, 6]. Though, intuitively, clustg

difference between ensembles of bootstrap parsitigith
and without the weighted sampling. Figure 1 shoaw h
different decision boundaries can separate two raktu
classes depending on the sampling probabilitiese ke

ensembles generated by other methods can be alsgssume that themeans clustering algorithm is applied to

boosted. It was shown [9] that small subsampleggdiy
suffice to represent the structure of the entira dzt in

the framework of clustering ensembles. Subsampfes o

small size can reduce computational cost for many e
ploratory data mining tasks with distributed sosra#
data [11].

We begin with a formalization of clustering corrdpin
tion problem. LeD be a data seif N points that is avail-
able either adNxd pattern matrix ind-dimensional space
or NxN dissimilarity matrix. Suppose that= {Xy,...,Xy}
is a set oH subsamples of size N drawn with replacement
from the given datd®. A chosen clustering algorithm is
run on each of the samplesArthat results i1 partitions
Mn={r, 7s,..., 71;}. Each component partition i is a set
of non-overlapping and exhaustive clusters wih=
{Cl',cz',...,C}L(i)}, Xi = C| U..UCcg O and K(i) is
the number of clusters in tlieh partition.

The problem of combining partitions is to find ewn
partition 0={C,,...,Cy} of the entire data s& given the

partitions inf, such that the data points in a clustepof sim(x y) =

are more similar to each other than to points ffent
clusters ofo. We assume that the number of clusidrs
the consensus clustering is predefined and caiiffeestht
from the number of clusteisin the ensemble partitions.
In order to find this target partitiosy one needs a consen-
sus function utilizing information from the pantitis {7}.
Several known consensus functions [1, 2, 3] carrbe
ployed to map a given set of partitions{ 7z, 7z,..., 71}

the subsamples. Initially, all the data points héheesame
weight, namely, the sampling probabiljty = s

id[1,...,N]. Clearly, the main contribution to the cluster-
ing error is due to the sampling variation that sesu
inaccurate inter-cluster boundary. Solution var@aman
be significantly reduced if sampling is increasjngbn-
centrated only on the subset of objects at itematio> t; >

to, as demonstrated in Figure 1.

The key issue in the design of the adaptation mech
nism is the updating of probabilities. We have &zide
how and which data points should be sampled as we
collect more and more clusterings in the ensemAle.
consensus function based on the co-associatiorev#l])
provides the necessary guidelines for adjustmerfits o
sampling probabilities. Remember that the co-assioci
similarity between two data poinisandy is defined as
the number of clusters shared by these pointserp#rti-
tions of an ensembla:

1if a=b

1 H
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A consensus clustering can be found by using atoagg
erative clustering algorithm (e.g., single linkagg@plied
to such a co-association matrix constructed frohthed
points. The quality of the consensus solution ddpemm
the accuracy of similarity values as estimated Hgy ¢o-
association values. The least reliable co-associatlues
come from the points located in the problematiasref
the feature space. Therefore, our adaptive strawedy



increase the sampling probability for such poirgswae labels.

proceed with the generation of different partitionghe The clustering consistency index of a point cardbe

ensemble. rectly used to compute its sampling probability. par-
The sampling probability can be adjusted not only b ticular, the probability value is adjusted at edehation

analyzing the co-association matrix, which is oadpatic as follows:

complesxityO(Nz), but also by applying the less expensive P.a(X) = Z(a p(R+1- CI(R), (5)

O(N+K?) estimation of clustering consistency for the data wherea is a discount constant for the current sampling

points. Again, the motivation is that the pointghwihe
least stable cluster assignments, namely those ftbat
guently change the cluster they are assigned tpine
increased presence in the data subsamples. loabé a

label correspondence problem must be approximately

solved to obtain the same labeling of clustersubhout
the ensemble’s partitions. By default, the clutbels in
different partitions are arbitrary. To make a cep@n-
dence problem more tractable, one needs to re-tsdH

partition in the ensemble using some fixed refegenc

partition. Table 1 illustrates how 4 different fons of
twelve points can be re-labeled using the firstifian as
a reference.

Table 1: Consistent re-labeling of 4 partitions of 12 objects.

m T Ty Ty ' T Tg Ty Consistency

X1 2 B X a 2 1 2 1 0.5
X, 2 A X o« 2 2 2 1 0.75
X3 2 A Y B 2 2 1 2 0.75
X, 2 B X B 2 1 2 2 0.75
xs 1 A X B 1 2 2 2 0.75
Xs 2 A Y B 2 2 1 2 0.75
X, 2 B X a 2 1 2 1 05
Xg 1 B Y a 1 1 1 1 1

Xy 1 B Y B 1 1 1 2 0.75
X 1 A Y a 1 2 1 1 0.75
X1 2 B Y o« 2 1 1 1 0.75
X, 1 B Y a 1 1 1 1 1

At the (t+1)-st iteration, when sonalifferent clusterings
are already included in the ensemble, we use thgatu

ian algorithm for minimal weight bipartite matching

problem in order to re-label ther()st partition.

As an outcome of the re-labeling procedure, we can

compute the consistency index of clustering forhedata
point. Clustering consistency ind€X at iterationt for a

point x is defined as the ratio of the maximal number of

times the object is assigned in a certain clustehée total
number of partitions:

M
CI(X) :imax{Zo*(ni(x), L)} (4)
H i=1 L Ocluster labels
The values of consistency indices are shown in &4bl
after four partitions were generated and re-labe\&ie
should note that clustering of subsamples of tha setD
does not provide the labels for the objects misgimat
drawn) in some subsamples. In this situation, tirarsa-

tion in Eqg. (4) skips the terms containing the imigs

probability andZ is a normalization factor. The discount
constant was set ta=0.3 in our experiments. The pro-
posed clustering ensemble algorithm is summarized i
pseudocode below:

Input: D — data set o points,

H — number of partitions to be combined

M — number of clusters in the consensus partition

K — number of clusters in the partitions of the ertdem

' — chosenconsensus function operating on cluster labels

p — sampling probabilities (initialized toNLfor all the points)

Reference Partition— k-meansD)

for i=1toH
Draw a subsampl¥; from D using sampling probabilitigs
Cluster the sampl¥;: 7£i) — k-meansX;)
Re-label partitiorvfi) using the reference partition
Compute the consistency indices for the data painbs
Adjust the sampling probabilitigs

end

Apply consensus functioh to ensemblél to find the partitiono

Validate the target partitioo (optional)

return o // consensus partition

3. Empirical study and discussion

The experiments were conducted on artificial arad-re
world data sets (“Galaxy”, “half-rings”, “wine”, “3
gaussian”, “lris”, “LON"), with known cluster labg| to
validate the accuracy of consensus partition. A pamin
son of the proposed adaptive and previous non-agapt
[9] ensemble is the primary goal of the experime¥iig
evaluated the performance of the clustering ensembl
algorithms by matching the detected and the knoanti-p
tions of the datasets. The best possible matcHirgdus-
ters provides a measure of performance expresséteas
misassignment rate. To determine the clusteringr gone
needs to solve the correspondence problem between t
labels of known and derived clusters. Again, thendrbu-
ian algorithm was used for this purpose. Thmeans
algorithm was used to generate the partitions ofpdes
of size N drawn with replacement, similar to bootstrap,
albeit with dynamic sampling probability. Each epipe
ment was repeated 20 times and average valuesaf er
(misassignment) rate are shown in Figure 2.

Consensus clustering was obtained by four different
consensus functions: hypergraph-based MCLA and CSPA
algorithms [2], quadratic mutual information [3]caEM
algorithm based on mixture model [4]. However, doe
space limitations, we report only the key findintgsre.
The main observation is that adaptive ensemblgbtbli
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Figure 2. Clustering accuracy for ensembles with adaptive and non-adaptive sampling mechanisms as a function of
ensemble size for some data sets and selected consensus functions.

outperform the regular sampling schemes on mosttben
marks. Typically, the clustering error decreasedLiBf6.
Accuracy improvement depends on the number ofelsist
in the ensemble partitionK). Generally, the adaptive
ensembles were superior for valueskofarger than the
target number of cluster§), by lor 2. With either too
small or too large a value &, the performance of adap-

tive ensembles was less robust and occasionallgevor

than corresponding non-adaptive algorithms. A sempl
inspection of probability values always confirmelae t
expectation that points with large clustering uteiaty
are drawn more frequently.

Most significant progress was detected when combina
tion consisted of 25-75 partitions. Large numbefs o

partitions @>75) almost never lead to further improve-
ment in clustering accuracy. Moreover, feir125 we
often observed increased error rates (except @hyiper-
graph-based consensus functions), due to the serea
complexity of the consensus model and in the nurolber
model parameters requiring estimation.
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