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Abstract 

In this paper the application of the class-specific features 

approach to classification is demonstrated for the problem 

of discriminating between speech and music. Feature 

extraction is class-specific and can therefore be tailored 

to each class meaning that segment size, model orders and 

the type of features used can be different for the classes. 

The performance of the discriminator is evaluated and an  

example of how classification is possible without training 

is given.  

1. Introduction 

The general problem of classification of audio signals 

has reached new levels of interest. Some of the 

applications of audio signal classification are speech/music 

classification [1], acoustical environmental classification 

[2][3], noise type classification [4] and musical genre 

classification [5]. The topic of audio signal classification is 

also interesting from a hearing instrument industry point of 

view. A typical modern digital hearing instrument has a 

suite of algorithms, each either tuned for a specific 

listening environment or has the possibility to be tuned for 

a specific listening environment. A method, e.g. [11], for 

automatically adapting a hearing instrument for various 

listening situations (silence, speech, noise, music, wind, 

etc.) would free users from manually having to change 

program using a pushbutton located on the hearing 

instrument, sometimes a task that is problematic for many 

hearing instrument users.  

Typically, an audio signal classification system is build 

from a discriminative point of view. Features are extracted 

and cluster analysis, distances measures, entropy analysis 

or related methods are used to filter out those initially 

proposed features that are similar in all classes and hence 

don’t provide any useful information for discriminating 

between classes. Based on the final set of features, 

probability density functions (PDFs) for the classes are 

estimated from training data. These class dependent 

density functions are defined on the same feature space 

making direct comparisons of the class likelihoods 

possible. The development of a discriminative audio signal 

classification system builds on experience, intuition and 

empirical findings. The advantages are that it is relative 

straight forward and quick to build a classifier and 

evaluate its performance. The disadvantage is that for 

difficult classification problems it might be impossible to 

find a suitable feature set that paves the way for the 

required performance.  

 A set of interesting audio classes from a hearing 

instrument point of view is speech, music, stationary and 

non-stationary noise. It has been found from previous work 

that discriminating between these classes with a very high 

degree of reliability is difficult. A few of the major 

problems in developing a high performance classification 

system for these classes are due to the huge variability 

within the classes and ambiguity (overlap) between the 

classes. To deal with these issues many features (much 

information) must be extracted from the input signal, a 

requirement that is in contrast to the demand of having a 

low dimensional feature vector so that class dependent 

density functions can be accurately estimated.  

 In this paper we apply a different classification 

approach to the task of developing an audio signal 

classification system, the class-specific features (CSF) 

approach [6]. For a given maximum feature dimension the 

class-specific approach opens up a possibility for using 

much more information (more features) when compared to 

the conventional approach. Each class gets its own 

separate branch in the classifier, incorporating feature 

extraction, class dependent likelihood evaluations and the 

computation of a data-dependent correction term. 

Furthermore, the class-specific classifier can be shown to 

be optimal in being equivalent to the Bayesian classifier 

formulated on the raw data, it provides guidance for 

selecting features for each class and can provide 

classification without the need for training or learn density 

functions from data (called the feature selectivity effect 

[6]).

We have concentrated on the classification of speech 

and music and will apply the CSF approach to the 

classification of these two classes. It may seem strange to 

start the design of a fully capable audio signal classifier 
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with only two classes but due to the parallel structure of 

the CSF classifier all classes don’t have to be considered 

initially. In this case, after making branches for the speech 

and music classes and fine-tuning these branches, adding 

branches can be done without changes in the already 

designed and fine tuned branches. 

 In section 2 the CSF approach is briefly 

introduced. In section 3 the speech and music branches are 

described and in section 4 the performance of the 2-branch 

classifier is evaluated. Finally in section 5 a discussion and 

directions for further research are given.  

2. The CSF approach 

Central to the CSF approach is the PDF projection 

theorem [6]. This theorem can be used for evaluation of a 

higher dimensional PDF,  p(x|Hj), defined on a N

dimensional raw data space under the hypothesis Hj, based 

on a projection using a lower dimensional PDF, p(zj|Hj),

defined on a M dimensional feature space. The feature 

vector zj=Tj(x) is class-specific and hence computed from 

a class dependent feature transformation Tj. Using the PDF 

projection theorem we can write  
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where H0,j denotes a class dependent reference hypothesis. 

We will also look at the PDF projection theorem as a 

factorization of a high dimensional PDF into two terms. 

The first term is the J function, defined in (1) that is a 

function of the raw input data and is derived from the 

choice of reference hypothesis and feature extraction 

transform. The second term is the PDF of the class-

dependent features that in practical use needs to be learned 

from data. Two things must be fulfilled in order for the 

projection in (1) to be optimal. The extracted class-

specific features, zj, must be statistical sufficient for the 

problem of choosing between Hj and H0,j, where H0,j is a 

class-dependent reference hypothesis  and the class feature 

density, p(zj|Hj), must be the true density. For practical use 

we must be satisfied with class-specific features that are 

approximately sufficient for the problem and class-specific 

feature density functions that only approximate the true 

densities and hence the projection in (1) and the 

classification rule in (2) are only approximately optimal. 

Using the PDF projection theorem the Neyman-Pearson 

classification rule can be written as 
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where K designates the number of classes. We see that we  

need to determine the distribution of the raw data and the 

class-specific features under a possibly class dependent 

reference hypothesis, H0,j. This reference hypothesis can 

theoretically be any reference hypothesis meeting some 

mild conditions [6], but the best choice is a reference 

hypothesis that (a) makes evaluation of p(zj|H0,j) tractable, 

and (b) admits a simple sufficient statistic when testing 

against Hj. Because it is tractable and appropriate as well, 

we choose to use the same reference hypothesis for both 

classes, denoted simply by H0. We let H0 consist of zero 

mean and unit variance i.i.d. gaussian random variables. In 

general it’s straight forward to evaluate p(x|H0,j), whereas 

the main difficulty in using the CSF approach relates to 

evaluating p(zj|H0,j). As the last point mentioned here, we 

note that using only the first term in (1) it’s actually 

possible to obtain classification performance without 

having to estimate the class density functions depending 

on the application and the required classification 

performance. 

3. Speech and music branches 

In order to determine a suitable set of features for each of 

the classes we take on a descriptive view and look for 

features that describe examples from each class to the 

point where it’s actually possible to ‘reconstruct’ the 

original examples. The idea is that if we can reconstruct 

the original examples so that by listening it’s possible to 

recognize what is being said or what piece of music is 

being played then the features convey most of the 

important information and hence are approximate 

sufficient. 

 As described in [6] the CSF classifier is suited for 

modularization.  This is also reflected in Figure 1 where a 

block diagram of the 2-branch CSF classifier is illustrated. 

All the modules used in Figure 1 and many more can be 

found in [9]. Notice that each branch in Figure 1 is broken 

into separate modules which are arranged in cascade 

fashion. This is a result of the chain-rule, the mathematical 

decomposition of the PDF projection theorem into a series 

of transformations [6]. The computation of the J-function 

terms for the used features have been worked out in [7][8].  

3.1. Speech branch 

For the speech class it’s well known that an all-pole model 

excited by either white gaussian noise (unvoiced) or a 

pulse train (voiced) is a good model, especially for clean 

speech. It was found that an 8th order LPC model on a 

segment size of 256 samples with pitch information could 

reconstruct the signal to the point where there was no 

doubt that the features represented speech and most of the 
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words were understandable. The synthesized speech 

sounded very harsh and contained many artifacts 

especially due to the completely white residual signal and 

zero samples overlap. 

The speech class model is specified by the auto-

correlation function (ACF) values at lags 0 to 8, r8 and the 

ACF value and index corresponding to the pitch lag, (rp,ip).

The circular ACF is used in order not to violate the 

assumed independence between segments. The first 2 

modules in the speech branch in Figure 1 computes these 

features and the corresponding normalization term. Instead 

of using the feature set zspeech=[r8,rp,ip] we will use 

zspeech=[ ,k8,rp,ip] which can be found from a series of 

invertible transformations which the last modules in the 

speech branch account for. This feature set, as also noted 

in [10], is more suitable for gaussian mixture PDF 

estimation. k8 denotes Log-Area Ratio (LAR) coefficients 

and =log(r0). We have factorized the PDF of zspeech

)|()|(),,|,()|,,,( 88 spspspspp HipHpiHrpHirp ρρρ kk ≈

where Hs denotes the speech hypothesis. p( |Hs) and 

p(ip|Hs) were given uniform distributions. This way the 

PDF estimation problem becomes more manageable. 

3.2. Music branch 

Typically, music is characterized by narrow band 

harmonic components that show up as peaks in the 

spectrum.  For this reason an experiment was conducted 

where the P largest bin values and indexes were extracted 

from the power spectrum block-by-block on a segment 

size of 128 samples. Remarkably for P=4 some music 

(especially classical music with a few instruments active) 

can be reconstructed to the point where the music can be 

recognized. For rock music it’s harder to recognize the 

music, the peaks in the spectrum are not as distinct as for 

classical music. It was found that P=8 resulted in relative 

good reconstruction results and was used in the 

classification experiments. 

 Thus the feature set for the music class is 

zmusic=[p8,ip8, 0], where p8 designates the 8 largest bin 

values in the power spectrum, ip8 the corresponding 

indexes and 0 the residual energy which as noted in [8] 

ensures that the feature set is a sufficient statistic for inputs 

with unknown variance. This feature set and the 

corresponding normalization term are computed by the 

first 2 modules in the music chain in Figure 1. It was found 

useful to use q8=log(p8) and =log( 0) to obtain a better 

PDF estimate using a gaussian mixture HMM. As for the 

speech branch the PDF of zmusic is factorized 

)|()|(),,|()|,,( 88888 mmmm HpHpHpHp ppp iiqiq εεε ≈

where Hm denotes the music hypothesis. Furthermore, 

p(ip8|Hm) was approximated by factorizing it into its 8 

marginal distributions, each was given a uniform 

distribution,  was also given a uniform distribution.

3.3. Implementation issues 

Saddlepoint approximation (SPA) is used in 2 of the 

modules in Figure 1 to compute the normalization term. 

Some convergence problems were experienced with the 

SPA when the lag corresponding to the pitch was too high 

(>120 samples) or when extracting too many features for 

the music class. In order to prevent convergence problems 

a pre-whitening filter was designed and used in all 

experiments. 

As noted in section 2 using the J function term of 

the PDF projection alone can provide a possibility to 

design a classifier without the need to estimate or train any 

PDFs. In fact, the chains can be deliberately designed for 

this purpose. If the last module (module_log) in the music 

chain in Figure 1 is left out, reasonable classification 

performance is obtained using only the J function term, 

hence providing untrained classification. Because the 

branches in the CSF classifier are not restricted to be the 

same, decisions or classification must be made in intervals 

corresponding to the largest segment size (not reflected in 

Figure 1).  
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Figure 1, Block diagram of speech and music branches. 
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4. Evaluation 

Before evaluating the approach on some corpus of speech 

and music, the branches were verified by acid tests[6]. 

These tests are important as they immediately reveal if 

there are issues in the branches, they are especially useful 

for checking the correctness of the computation of the 

normalization terms.  

To evaluate the approach, speech and music 

samples were collected. From a classical music CD with 

12 tracks 1 minute of music was extracted from each track 

and split into 2 seconds samples leading to a total of 360 

classical music samples. From a pop music CD with 20 

tracks 1 minute of music was extracted from each track 

and split into 2 seconds samples leading to a total of 600 

pop music samples. From 11 different speakers a total of 

255 2 seconds samples were obtained. All sounds were 

recorded in mono with a 16kHz sample rate. The class-

specific density functions were estimated using gaussian 

mixture HMMs. 130 speech samples and 75 music 

samples were used in the density estimation. For each 2 

seconds sound sample the number of segments (256 

samples) classified as speech or music were counted and 

the sound sample was classified as belonging to the class 

having most counts. Classification performance is 

summarized in Table 1.  

An experiment was made where only the 

correction term was used for the classification. In this case 

all speech samples were classified correct and only 27 

samples out of 600 pop music samples were misclassified. 

However, only half of the classical music samples were 

classified correct. 

   Trained Untrained 

Speech 100% 100% 

Music 100% 80% 

Table 1, Classification performance. 

5. Discussion 

Beside further fine-tuning of the chains, future work will 

be directed into extending the 2-branch classifier with 

more classes. For instance a stationary noise class 

(containing e.g. traffic noise) could be represented with a 

relative large segment size and a low order AR model. The 

feature selectivity effect of the CSF approach is an effect 

which can turn out to be very useful in practical use 

leaving out the burden to learn density functions, saves 

computations and potentially making calibration 

provisions unnecessary. The feature selectivity of the 

speech chain used herein works very well whereas the 

feature selectivity of the music chain is less distinct. It is 

also worth noting that when having designed a CSF 

classifier the step needed to develop an optimal 

segmentation algorithm is not that big. For instance, a 

HMM can work on top of the CSF classifier or the learned 

density functions can be replaced with one big HMM with 

multiple observation spaces [12] using the Viterbi 

algorithm to perform the segmentation. 
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