SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Confidence-driven Architecture for Real-time
Vision Processing and Its Application to
Efficient Vision—-based Human Motion Sensing

Yoshimoto, Hiromasa
Department of Intelligent Systems, Kyushu University

Date, Naoto
Department of Intelligent Systems, Kyushu University

Arita, Daisaku
Department of Intelligent Systems, Kyushu University

Taniguchi, Rin-ichiro
Department of Intelligent Systems, Kyushu University

https://hdl. handle. net/2324/5979

HhRI1EZR : Proceedings of the International Conference on Pattern Recognition. 1, pp.736-740,
2004-08
N—=2 3

HEFIBAMR

Confidence-driven Architecture for Real-time Vision Processing and
Its Application to Efficient Vision-based Human Motion Sensing

Hiromasa Yoshimoto, Naoto Date, Daisaku Arita, Rin-ichiro Taniguchi
Department of Intelligent Systems,Kyushu University, Japan
{yosimoto,naoto,arita,rin} @limu.is.kyushu-u.ac.jp

Abstract

In this paper, we discuss a real-time vision architecture
which provides a mechanism of controlling trade-off be-
tween the accuracy and the latency of vision systems. In
vision systems, to acquire accurate information from input-
images, the huge amount of computation power is usually
required. On the other hand, to realize real-time processing,
we must reduce the latency. Therefore, under given hard-
ware resources, we must make difficult trade-off between
the accuracy and the latency so that the quality of the sys-
tem’s output keeps appropriate. To solve the problem, we
propose confidence-driven scheme, which enables us to con-
trol the trade-off dynamically and easily without rebuilding
vision systems. In the confidence-driven architecture, the
trade-off can be controlled by specifying a generalized pa-
rameter called confidence, which relatively indicates how
accurate the analysis should be. Here, we present the con-
cept of confidence-driven architecture, and then, we show a
shared memory which uses confidence-driven scheme. Us-
ing confidence-driven memory, we can use imprecise com-
putation model to reduce the latency without a large de-
crease of accuracy.

1. Introduction

Using computer vision techniques, we can acquire var-
ious information of the real world such as object types, or
the position and pose of the object. In general, to increase
the accuracy of the acquired information, we need complex
vision algorithms, which leads to increase of computation
time. On the other hand, for vision applications requiring
real-time analysis, the latency, or time required to obtain the
processed result, is of critical importance. Thus, we have to
make difficult trade-off between the accuracy and the la-
tency. Since the trade-off depends on situation where the
vision system works, from a practical point of view, a com-
putational technique is required in which we can easily and

dynamically control the trade-off without changing an ap-
plication program itself.

In principle, such computation technique can be for-
mulated as imprecise computation model[1], in which the
computation accuracy increases as allowable computation
time increases. Its important feature is that even uncom-
pleted computation produces meaningful results, which can
be used for further computation. Based on this feature, we
can solve the trade-off between the accuracy and the la-
tency. However, no general software framework to realize
the imprecise computation has been established. Here, to
solve this problem, and to provide a general software frame-
work for real-time vision processing based on the imprecise
computation model we have proposed confidence-driven ar-
chitecture.

In this paper, we outline the confidence-driven architec-
ture and then we present its application to a real-time vision-
based human motion sensing system. In this application,
prediction mechanisms built in confidence-driven memo-
ries, which are implementation of the confidence-driven ar-
chitecture, make the system less computational and make
the system have less latency without a large decrease of ac-
curacy. Although prediction-based frameworks such as Dy-
namic Memory[2] and Dead Reckoning[3] provide simi-
lar latency-free features, they do not take account of the
accuracy of the computation. The important point of the
confidence-driven architecture is that depending on system
environments and goals, we can dynamically and easily
control the accuracy-latency trade-off without changing the
system softwares.

2. Confidence-driven Architecture
2.1. Latency vs Accuracy

Any vision systems contain a difficult trade-off: a large
computation is required to get accurate information from
an image; on the other hand, fast computation is desired to
acquire information quickly. The trade-off is influenced by
many factors: whether a user assigns high priority to higher

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

precision or to lower latency; how many computational re-
sources such as computation time and bandwidth of the net-
work are available. We have to make difficult trade-off be-
tween the accuracy and the latency in dynamically so that
the quality of the system’s output keeps appropriate.

For example, when we detect faces in an input image,
we have several options such as (1) searching for a skin
color region with a certain size (2) searching for a region
including sub-regions of eyes and a mouth with appropri-
ate positional relations. (1) is faster but less accurate and
(2) is slower but more accurate. We have to select an appro-
priate method depending on the situation where the system
works. In another aspect, when we deal with real time im-
age sequences, we can often assume that a target, or a face,
moves continuously, or that the target position is a continu-
ous variable. Then, reduction of the redundancy which the
variable implicitly has can lead to decrease of the compu-
tation time. Trade-off here is to determine the ratio of the
use of the estimator to that of execution of a vision algo-
rithm for face searching in an image. Since the trade-off de-
pends on the situation, we require a software framework in
which we can easily control the trade-off without changing
an application program itself.

2.2. Confidence-driven Architecture

It is important that both of the above examples, the face
searching and the estimator, have the same characteristic:
as the time increases the accuracy of the output becomes
higher monotonically. The monotonic characteristic is a ba-
sis of imprecise computation model[1]. If a precise relation
between allocated computation time and the accuracy are
known, we can control the trade-off according to the rela-
tion. However, since usually the relation is affected by sev-
eral factors and is not known precisely in advance, we can
only hypothesize a simple relation such as linearity between
the time and the accuracy. Therefore, in practice, to make
the trade-off, we have to iteratively re-build a vision sys-
tem through trial and error in order to adjust the system to a
given environment and goal, and it is almost impossible to
adjust the system on the fly.

Here, we estimate a relative accuracy heuristically, and
represent it as “confidence”, ranging from 0 to 1. The con-
fidence is an abstraction of the accuracy, so the higher the
confidence becomes, the more accurate the estimation will
be. “confidence”, Based on the “confidence”, we can for-
malize various trade-off problems as a simple producer-
consumer problem. To clarify the description, we have in-
troduced several functions. Figl shows the relation among
those functions. Target information is denoted as a time
function z(t). ¢(t) is the confidence of the x(¢). In the
system, the producer computes a value of z(¢,) from an
input stream. The heavier computation method the pro-

<0 /_\/

Fx(h, t)

Fe(h, 1)

Figure 1. Relation among x(t), c(t), F.(h,t)
and F.(h,t).

ducer uses, the higher confidence c(t,,) of z(t,) becomes.
The producer provides a history h of the stream, a set of
{tn, z(tn), c(tn)}.

Then, we have introduced two estimators, F;,(h,t) and
F.(h,t), which are given by a system developer. F,(h, t) is
an estimator of z(¢), which refers to the history ». When the
history has not enough information to estimate x(¢), the es-
timation of F.(h,t) has less confidence. F.(h,t) is an es-
timator of ¢(t), and, in general, the confidence is getting
lower as the estimator predicts data of more distant future.
Since the confidence only has a relative meaning of the ac-
curacy, F..(h,t) is required to present the relative character-
istic of the accuracy, not to present the absolute characteris-
tics.

The key idea of our confidence-driven architecture is that
it is not the data but the confidence which the consumer
waits for. The data z(t) is estimated by Fj(h,t) in any
time, and the consumer waits until the F.(h,t) becomes
high enough. We call this scheme as “confidence-driven.”
Using the confidence-driven scheme, the trade-off between
the accuracy and the latency is converted to the trade-off be-
tween the confidence and the latency. The point is that “con-
fidence” only conveys a relative meaning about the accuracy
of an acquired result and that its value need not have a pre-
cise physical meaning. The confidence is just used to con-
trol the trade-off and is decided by empirically or experi-
mentally depending on the situation.

2.3. Confidence-driven Memory

Confidence-driven memory (CDM for short) is a shared
memory based on the confidence-driven scheme. Producer
and consumer are implemented as threads and can commu-

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

1 cdm_read(m, t, Cr, deadline) { 1 cdm_write(m, t, x,) {

2 while (Fe(m.h, t) < Cr){ 2 update_history(m.h, {t, x, c});
3 cond_wait(m.cond, deadline); 3 cond_signal(m.cond);

4 i (is_timedout) break; 4}

5}

6 return {Fx(m.h, t), Fc(m.h, t) };

7}

Figure 2. Pseudo codes of cdm_read and
cdm_write operations.

nicate over the confidence-driven memory with three op-
erations, cdm_read, cdm_write and cdm_poll with a
pair of user-defined functions F,(h,t) and F.(h,t). Fig.2
shows pseudo codes of cdm_read and cdm_write oper-
ations. The consumer thread executes the cdm_read oper-
ation and waits until deadline for the confidence becomes
high enough. When the consumer is suspended because of
waiting, the producer thread computes data to make the con-
fidence bigger. Thus each threads synchronized according
to the confidence. In general, there is a certain overhead
for the threads to share the data completely. However, in
the confidence-driven scheme, each thread shares estimated
data without the overhead while the confidence Fi(h,t) is
higher than the consumer requires.

A cdm_poll operation is for waiting for confidences
of some confidence memories. It specifies an array of M
CDMs and their required confidences and waits until dead-
line for the confidences of N (< M) CDMs become higher
than the required confidences. In other words, the waiting
process at lines 2 to 5 in pseudo code of cdm_read opera-
tion is the case of N = M = 1 of cdm_poll.

3. Application to Vision-based Real-time Hu-
man Motion Sensing

3.1. Overview

Vision-based real-time human motion sensing[5] is a
promising approach to measure human postures and mo-
tions. Because it does not require any special markers or at-
tachments, it does not impose any physical restrictions on
a user and then the user has no unnatural feelings to the
system. However, there are several problems to be solved.
From an architectural viewpoint, efficient computing mech-
anism which makes real-time processing possible is very
important. This is because we have to adopt a multi-view
approach to solve the self-occlusion problem in human mo-
tion sensing, and because the multi-view approach causes
heavy computation. In addition, to apply the vision-based
sensing to interactive applications, not only the throughput
but the latency is quite important. Here, to make the hu-
man motion sensing system more efficient, we have applied

camera 1

po—liewzonn = | 30PM RRM |
o [Gezor l

o 5

camera N

for " [cvaznen]
—

Figure 3. Overview of vision-based human
motion sensing.

confidence-driven architecture. At first, we briefly overview
algorithms of our vision-based human motion sensing.

3.2. Algorithms for Human Motion Sensing

To solve the self-occlusion problem we have adopted a
multi-view approach and the basic algorithm flow of our
real-time motion capturing is illustrated in Fig. 3. To re-
alize real-time processing, we have implemented the algo-
rithm on a PC cluster.

Detection of perceptual cues

Usually, a limited number of perceptual cues of a human
body can be detected robustly from images. Here, we have
employed skin-color blobs and sock-color blobs are used as
major perceptual cues, which correspond to a head', hands
and feet. The blobs are detected based on color similarity
analysis after a silhouette of a human body is extracted by
background subtraction. The centroids of the blobs are used
to calculate the 3D positions of those cues.

In general, the 3D positions of the color blobs can be cal-
culated based on binocular stereo. However, with only two
views, the self-occlusion problem can not be solved, and,
we have adopted a multi-view approach. In addition, a torso
position is also estimated based on the head position. The
center of torso is estimated as a point just below the head
with the distance of a predetermined value.
3D human motion synthesis

Since information acquired in the perception process is
just 3D positions of a torso, a head, hands and feet of a hu-
man body, we have to estimate the body posture from these
cues, the number of which is less than the degree of freedom
of the body. Actually, we have to estimate 3D positions of
elbows and knees. This problem can be solved in a frame-
work of inverse kinematics, in which arms and legs are ma-
nipulators and the 3D blob positions are goal positions of

1 Strictly speaking, it corresponds to a face.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

camera 1

Do [iomezoe] ooy
o [Guzon] £
o #

| 3DPM E)sRRV|
camera N

o [iowezoen] [
|:| PC Confidence-driven Memory

Figure 4. Human motion sensing imple-
mented with CDM.

end effectors. robotics. According to a very simple human
body model, which has 14 parts and 23 DOFs, we have es-
tablished a simple model matching algorithm based on in-
verse kinematics and estimated human body postures. In-
verse kinematics is solved by a popular cyclic coordinate
descent method[4].

3.3. Confidence-driven Implementation

Since we have adopted a pipeline structure in our PC-
cluster-based implementation to achieve high throughput,
the latency of the system is not reduced yet. As mentioned,
our real-time motion sensing is based on the observation
of blob positions. Therefore, assuming the continuity of
those values, we can apply the confidence-driven architec-
ture to communication of the blob positions in the sys-
tem and we expect the reduction of delay thanks to the
confidence-driven architecture. In addition, the confidence-
driven memory makes asynchronous execution of read and
write operations, with which read operations can be issued
more frequently than write operations are issued. Thus, ren-
dering of a CG avatar in the system can be done frequently,
which makes the avatar’s motion smooth and natural.

Figure 5. Environment for experiments.

Conf. Conf.

N
> .

th1 o time t-1 tn time

(a) Fe(h, t) for CDM, (b) Fe(h, t) for CDM,

Figure 6. Definitions of two F.(h,t).

4. Experiment and Evaluation

Here, we evaluate the effectiveness of the confidence-
driven architecture when it is applied to vision-based human
motion sensing. Fig.5 shows our human motion sensing en-
vironment (At the left bottom corner, an estimated posture
is displayed.). We have used 9 IEEE-1394 cameras and a
PC-cluster with 10 PCs.

In this experiment, we use two confidence-driven mem-
ories, CDM, and CDM,. CDM,s are used for sharing
the 2D positions of the blobs and for synchronizing im-
age information acquired by asynchronous cameras, while
C'D M, is used just for sharing the 3D positions of the blobs.

F,, (h,t)is an estimating function used with cdm_read
and cdm_poll operation via CDM,. It returns an ar-
ray of 2D positions of blobs which are used as candidates
of the head, hands and feet. Fig.6(a) shows an outline of
F,, (h,t), which is defined according to heuristics that the

a

error ||z(t) — F,, (h,t)|| becomes large as the time dif-
ference between observed (or captured) time and accessed
time ¢ becomes large. Among 2D blobs detected different
cameras, the most confident pair of 2D blobs at time ¢ are
selected, which are used to calculate the 3D position of the
blob based on binocular stereo. In other words, we can se-
lect the most and the second most confident C'D M, from 10
CDM,s by cdm_poll operation with Fi_(h,t), and, thus,
we can acquire the 3D position of each blob with high con-
fident.

On the contrary, Fy, (h,t) is a linear prediction func-
tion. It returns the estimated 3D positions of the head, hands
and feet. The confidence of the estimation is calculated by
F,,(h,t) shown in Fig.6(b), which always assigns 1 to the
past estimation. This is because estimated 3D positions, or
interpolated 3D positions, between observed times are al-
ways confident enough. Thus, postures of the user, which
are estimated from the 3D positions of the blobs, can be esti-
mated anytime, and, as a result, the CG avatar can be gener-
ated frequently, i.e., the CG avatar can move quite smoothly.

Fig.7 illustrates the relation between the required confi-

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

1200

1000

800

600

400

200

x-position of left hand (mm)

-200

-400

true value —
600 F estimation (req. conf. 0.2) -------
estimation (req. conf. 0.6) --------
es}imation (req‘. conf. 1.0) ‘

Ry
L I

0 1000 2000 3000 4000 5000 6000

-800

Figure 7. Required confidence and estimated
left hand 3D position (x-axis).

dence and the error of a 3D blob (a left hand) position es-
timation in an image sequence. Table 1 shows the relation
between the required confidence and the latency and sev-
eral other statistics. These results show that the higher the
required confidence becomes, the higher the accuracy of es-
timation becomes. On the other hand the lower the required
confidence becomes, the smaller the latency becomes. In
other words, low latency can be achieved by sacrificing
the accuracy. However, it achieves relatively high accuracy
due to an estimation mechanism built in confidence-driven
memories. When the required confidence is too small, over-
shoots exhibit apparently, which cause unnatural motion re-
covery. For estimation of elbow position, the errors do not
change drastically depending on the required confidence.
This is because a method to solve the inverse kinematics
is not very accurate, and because the difference of hand po-
sition does not make a large difference in elbow position es-
timation.

Since the confidence-driven memory makes asyn-
chronous execution of read and write operations, ren-
dering of a CG avatar in the system is done frequently,
which makes the avatar’s motion smooth and natu-
ral, and the lower the required confidence becomes, the
more frequently the avatar is rendered. It is important to no-
tice that by changing the required confidence, we can make
the trade-off between the latency and the accuracy dynami-
cally and smoothly.

5. Conclusion

In this paper, we have presented confidence-driven ar-
chitecture to efficiently control difficult trade-off between
the accuracy and the latency of real-time vision process-
ing. Confidence-driven memory provides a simple but use-

required confidence 0.2 0.6 1.0
latency(msec) 50 170 230
error (mm) in left hand pos.

(average) 117.9 59.0 40.2
error (mm) in left hand pos.

(std. dev.) 62.9 25.8 17.6
error (mm) in left elbow pos.

(average) 1247 1194 1164
error (mm) in left elbow pos.

(std. dev.) 852 826 818

Table 1. Required conf. vs latency and esti-
mation errors.

ful software interface for implementing several computa-
tional techniques known as imprecise computation model.
The important point is that it provides a mechanism of syn-
chronization with respect to confidence, which is an ab-
stracted value of the accuracy. The confidence-driven ar-
chitecture provides a mechanism to control the trade-off by
just changing the confidence without rebuilding the system,
and can increase the system execution efficiency in terms of
throughput and latency.

Applying the confidence-driven architecture to vision-
based real time human motion sensing, we can reduce the
latency of a real-time motion sensing system by imprecise
computation motion without a large decrease of the accu-
racy, which is shown in experimental results stated here.
Currently, to examine the effectiveness of the confidence-
driven architecture, we are going to combine several dif-
ferent vision algorithms using confidence-driven memories
and to control the trade-off dynamically.

References

[1] J. Liu, W. Shih, K. Lin, R. Bettati, and J. Chung. Imprecise
computations. Proceedings of the IEEE, 82(1):83-94, Jan.
1994.

[2] T. Matsuyama, S. Hiura, T. Wada, K. Murase, and A. Yosh-
ioka. Dynamic memory: Architecture for real time integration
of visual perception, camera action, and network communica-
tion. In Proceedings of Comuter Vision and Pattern Recogni-
tion Conference, pages 728-735, Jun. 2000.

[3] S. Singhal and M. Zyda. Networked Virtual Environments.
Addison Wesley, 1999.

[4] L. Wang and C. Chen. A combined optimization method for
solving the inverse kinematics problem of mechanical ma-
nipulators. /EEE Transactions on Robotics and Automation,
7(4):489-499, Aug. 1991.

[5] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: real-time tracking of the human body. [EEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780-785, Jul. 1997.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

