
An FPGA-based Architecture for Real Time Image Feature Extraction

D.G. Bariamis, D.K. Iakovidis, D.E. Maroulis

University of Athens

Dept. of Informatics and Telecommunications

Illisia, 15784 Athens, Greece

rtsimage@di.uoa.gr

S. A. Karkanis

Technological Educational Institute of Lamia

Dept. of Informatics and Computer Technology

3rd klm Old Nat. Road, 35100 Lamia, Greece

sk@teilam.gr

Abstract

We propose a novel FPGA-based architecture for the ex-

traction of four texture features using Gray Level Cooc-

currence Matrix (GLCM) analysis. These features are an-

gular second moment, correlation, inverse difference mo-

ment, and entropy. The proposed architecture consists of

a hardware and a software module. The hardware mod-

ule is implemented on Xilinx Virtex-E V2000 FPGA using

VHDL. It calculates many GLCMs and GLCM integer fea-

tures in parallel. The software retrieves the feature vectors

calculated in hardware and performs complementary com-

putations. The architecture was evaluated using standard

grayscale images and video clips. The results show that it

can be efficiently used in realtime pattern recognition appli-

cations.

1 Introduction

Realtime image pattern recognition is a challenging task

which involves image processing, feature extraction and

pattern classification. It applies to a wide range of appli-

cations including multimedia, military and medical ones.

Its high computational requirements force systems to use

very expensive clusters, custom VLSI designs or even both.

These approaches suffer from various disadvantages, such

as high cost and long development times. Recent advances

in fabrication technology allow the manufacturing of high

density and high performance Field Programmable Gate Ar-

rays (FPGAs) capable of performing many complex com-

putations in parallel while hosted by conventional computer

hardware.

A variety of architecture designs capable of supporting

realtime pattern recognition have been proposed in the re-

cent literature, such as implementations of algorithms for

image and video processing [4, 5], classification [5, 6] and

image feature extraction algorithms [7, 8]. Although texture

plays a significant role in image analysis and pattern recog-

nition only a few architectures implement on-board textu-

ral feature extraction. Most prominent approaches include

the extraction of Gabor wavelet features for face/object

recognition [7] and the computation of mean and contrast

Gray Level Cooccurrence Matrix (GLCM) features [8]. In

the second case the two features are approximated without

computing GLCMs.

In this paper we propose a novel FPGA-based architec-

ture for realtime GLCM texture analysis. The proposed ar-

chitecture combines both software and hardware to raster

scan input images with sliding windows and produce 16-

dimensional feature vectors consisting of four GLCM fea-

tures calculated for four directions.

2 Methods

The image feature extraction process involves raster

scanning the image with windows (subimages) of a given

dimension and a given scanning step. This step corresponds

to the offset between two consecutive subimages.

Cooccurrence matrices encode the gray level spatial de-

pendence based on the calculation of the 2nd order joint

conditional probability density function f(i, j, d, θ), which

is computed by counting all pairs of pixels at distance d hav-

ing gray levels i and j at a given direction θ. We have con-

sidered four directions, namely 0◦, 45◦, 90◦ and 135◦, as

well as a predefined distance of one pixel in the formation

of the matrices. Among the 14 statistical measures origi-

nally proposed [1], we have considered four, namely angu-

lar second moment (f1), correlation (f2), inverse difference

moment (f3) and entropy (f4). These four measures pro-

vide high discrimination accuracy [3], which can be only

marginally increased by adding more features in the feature

vector.

f1 =
Ng∑
i=1

Ng∑
j=1

p2
ij (1)

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



f2 = (
Ng∑
i=1

Ng∑
j=1

i · j · pij − µxµy)/(σxσy) (2)

f3 =
Ng∑
i=1

Ng∑
j=1

1
1 + (i − j)2

pij (3)

f4 = −
Ng∑
i=1

Ng∑
j=1

pij · logpij (4)

where pij is the ijth element of the normalized cooccur-

rence matrix, Ng is the number of gray levels of the image,

µx, µy , σx and σy are the means and standard deviations

of the marginal probabilities Px(i) and Py(i), obtained by

summing the rows or columns of the pij matrix.

In order to simplify the hardware implementation and in-

crease software performance, the floating point operations

(Eq. 1-4) were replaced by integer operations (Eq. 5-9),

f1 = (
Ng∑
i=1

Ng∑
j=1

c2
ij)/r2 (5)

f2 =


r · N2

g

Ng∑
i=1

Ng∑
j=1

i · j · cij − r2


 · Ng − 1

S
(6)

S =
Ng∑
k=1

(
r − Cx(k)

)2
(7)

f3 = 2−30 ·
Ng∑
i=1

Ng∑
j=1

cij · IDMLUT[i − j] (8)

f4 = 2−26 ·
Ng∑
i=1

Ng∑
j=1

cij · (LOGLUT[cij ]− 226 · log r) (9)

where cij is the ijth 16-bit integer element of the unnor-

malized cooccurrence matrix and r is a 16-bit integer nor-

malizing constant. Cx(k) is an array of 16-bit integers

that represent the sum of each column of the GLCM. The

IDMLUT[k]=�230/(1+k2)� and LOGLUT[k]=�226·log k�
arrays correspond to 32-bit look up tables used for the ap-

proximation of 1/(1+k2) and log k respectively. Ng , i and

j are represented using 8-bit integers.

3 Architecture Description

The proposed architecture consists of two stages, a pre-

processing stage and the feature extraction block (Fig. 1).

The first prepares input data to be processed by the fea-

ture extraction block while the second combines both soft-

ware and hardware to calculate GLCM features. Most of the

GLCM feature vectors are calculated in hardware. Software

supports hardware by performing supplementary computa-

tions.

Control
Unit

Memory Controller

On-card Memory

GLCM
Calculation

Unit

GLCM
Calculation

Unit

GLCM
Calculation

Unit

Feature
Calculation

Unit

FPGA

Input
Preprocessing

Output
Software
Module

Feature
Extraction

Block

Hardware
Module

..
.

Figure 1. Overview of the architecture

3.1 Preprocessing

The preprocessing handles the conversion of the image

into an array A suitable for processing by the feature ex-

traction block. Each element a = [a0a1a2a3a4] of A corre-

sponds to each pixel. It is formed by five integers. The first

(a0) is the gray level of the corresponding pixel, while the

others (a1, a2, a3, a4) are the gray levels of its first neigh-

bors for the four directions considered. Following a linear

quantization of the image intensities to 64 gray levels, they

can be adequately represented by 6-bit integers. This results

in a 30-bit representation of each element that can be read

by the hardware in one cycle, thereby enabling the simul-

taneous computation of the GLCM intensity transitions for

the four angles.

3.2 Feature Extraction Block

The feature extraction block consists of a hardware and

a software module. The hardware module is implemented

on a Xilinx Virtex-E V2000 FPGA using VHDL [9]. The

FPGA is hosted by the Celoxica RC1000 card that also in-

cludes four 2MB static RAM banks. The FPGA block RAM

and the distributed RAM implemented on chip sum up to

1Mbit. The host computer preprocesses the image, and

loads the resulting array to one of the four memory banks

on the card. The FPGA calculates the feature vectors and

stores them in another bank, from where they are retrieved

by the host. The FPGA architecture consists of:

• A control unit that coordinates the functionality of the

FPGA, by generating the signals that synchronize the other

units

• A memory controller that handles transactions from and

to the on-card memory

• A parallel array of 72 GLCM calculation units, organized

in 18 GLCM calculation unit quadruplets

• A feature calculation unit capable of reading GLCMs,

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



calcualting the feature vectors and storing them into the on-

card memory.

3.2.1 GLCM Calculation Units

The GLCM calculation unit consists of a 16-way set asso-

ciative array [2] with a capacity of 512 cells and the circuitry

needed for GLCM calculation.

GLCM calculation units receive pairs of gray level val-

ues as input. These pairs are obtained by decoding the el-

ement a of array A. The GLCM calculation units of any

GLCM quadruplet are fed by a0a1, a0a2, a0a3 and a0a4

pairs. When a gray level pair a0ai, i ∈ 1, 2, 3, 4 is read by

the GLCM calculation unit, the respective cell of the set as-

sociative array is incremented by one.

3.2.2 Feature Calculation Unit

The feature calculation unit receives as input a GLCM gen-

erated by each GLCM calculation unit and outputs a vector

V = [V1, V2, V3, V4, VS ] to the on-card memory.

V1 =
∑

c2
ij

V2 =
∑

i · j · cij

V3 =
∑

cij · IDMLUT[i − j]
V4 =

∑
cij · (log cij − log r)

VS =
∑(

r − Cx(k)
)2

where log cij and log r are represented as fixed point values.

log r is precalculated in software and stored in a register be-

fore use, while IDMLUT[k] (8) is stored in a 64 × 32-bit

ROM.

Several methods have been proposed in the literature

for logarithm calculation, including Newton-Raphson and

power series. These are iterative methods which require ei-

ther a long pipeline and many computational units or few

computational units and many cycles to calculate a single

result. We implemented an efficient approach for the cal-

culation of log cij , which has limited requirements in hard-

ware resources and results in a low approximation error. It

consists of 3 steps:

1. The integer part of log cij , li = �log cij� is calculated

by means of a priority encoder [9]. Its value equals to the

index of the most significant non-zero bit of cij .

2. The fractional part of log cij , lf = log cij − �log cij�
is calculated by a single shifter. The shifter displaces cij by

(16 − �log cij�) bits to the left.

3. The fractional part lf is transformed as follows:

l′f =
{

lf + 1/4 · lf if lf ≤ 1/2
lf − 1/4 · lf + 1/4 if lf > 1/2 (10)

The first two steps result in a linear approximation of the

logarithm between values corresponding to cij = 2n, n ∈N,

while the third contributes to an increase of the approxima-

tion accuracy.

3.2.3 Software Module

The software module retrieves the vectors V from the on-

card memory. The integer components of each vector are

converted into 32-bit floating point values. Substituting

these values in Eq. 5-9 the corresponding GLCM features

are calculated. Moreover the software module is capable of

supporting the calculation of vectors V that were not com-

puted in hardware. The software implementation used is

highly optimized, based on an algorithm that takes advan-

tage of the sparseness and symmetry of the cooccurrence

matrix.

4 Results

The performance of the proposed architecture was eval-

uated using standard grayscale still images and videos. The

images used were DocCageCity.0002 (I1) and GroundWa-

terCity.0000 (I2) from the Vistex database and Lenna (I3),

having 256 × 256 dimensions. The video clip used was the

Silent (I4), with a frame dimension of 128× 128 pixels and

a total of 300 frames. In Fig. 2 the three still images and one

frame of the video are shown, as well as the distribution of

non-zero elements in the cooccurrence matrices produced

for each image.

Figure 2. Test images and cooccurrence ma-
trices’ distribution

The hardware implementation calculates all results using

integer-only arithmetic. For f1, f2 and f3 this results in no

error cumulation and output identical to the optimized soft-

ware implementation. For f4, the logarithm is calculated

through approximation. This method (Sec. 3.2.2) produces

results that have a relative error of less than 0.5% for ev-

ery 16-bit input, except some distinct cases. Using a small

16× 32-bit ROM, we can eliminate these cases and claim a

maximum relative error of 0.5%.

The host processor used was an Athlon 1GHz and the

FPGA functions at 25MHz. The feature vectors are calcu-

lated rather fast, but the factor that determines total perfor-

mance is the density of the cooccurrence matrices produced

by the image. If the 512 non-zero GLCM element limit is

exceeded, the corresponding feature needs to be calculated

in software, resulting in an overhead. For the images and

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



Table 1. Experimental results
W S t1 rs (%) t2 tH tS
8 4 30.8 100.0 0.0 30.8 189.4

8 8 9.89 100.0 0.0 9.89 51.6

I1 16 4 46.2 100.0 0.0 46.2 286.7

16 8 13.9 100.0 0.0 13.9 65.6

32 4 70.8 98.65 10.5 81.3 301.4

32 8 20.3 98.65 2.7 23.0 85.6

8 4 30.8 100.0 0.0 30.8 196.8

8 8 9.89 100.0 0.0 9.89 54.4

I2 16 4 46.2 100.0 0.0 46.2 303.2

16 8 13.9 100.0 0.0 13.9 69.7

32 4 70.8 99.84 1.2 72.0 297.4

32 8 20.3 99.84 0.3 20.6 85.5

8 4 30.8 100.0 0.0 30.8 186.8

8 8 9.89 100.0 0.0 9.89 51.2

I3 16 4 46.2 100.0 0.0 46.2 297.4

16 8 13.9 100.0 0.0 13.9 61.5

32 4 70.8 97.48 19.6 90.4 342.9

32 8 20.3 97.48 5.1 25.4 95.9

8 4 5.7 100.0 0.0 5.7 50.5

8 8 1.9 100.0 0.0 1.9 14.2

I4 16 4 6.6 100.0 0.0 6.6 65.4

16 8 2.3 100.0 0.0 2.3 20.5

32 4 8.9 89.05 15.5 24.4 97.6

32 8 2.7 89.05 4.4 7.08 27.9

the video tested, the computation times are shown in Ta-

ble 1, where W and S are the window and step parameters

in pixels, t1 and t2 are the time in ms needed for the cal-

culation in the hardware and software module respectively,

and rs column is the ratio of vectors successfully computed

in hardware versus those computed in software. tH is the

total time in ms needed for the extraction of the feature

vectors for each image. The last column of the above ta-

bles (tS) presents the corresponding execution times of the

software module without any hardware acceleration. The

results shown for the video clip (I4) are the average times

for all of its frames.

5 Conclusions

We proposed and implemented a novel FPGA-based ar-

chitecture for realtime extraction of four GLCM features.

It combines both hardware and software to achieve accu-

rate feature calculation as well as a considerably high per-

formance, which can be accounted to the efficient parallel

implementation. Most of the calculations are performed in

hardware. The results show that the proposed architecture

could be efficiently used for real time pattern recognition

applications. Realtime operation depends on the image size

(D), the window size (W ) and the scanning step (S) and

can be guaranteed for particular combinations of these pa-

rameters (e.g. D ≤ 256, W ≤ 16 and S ≥ 4).

6 Acknowledgments

This work was realized under the framework of the Op-

erational Program for Education and Vocational Training

Project Pythagoras cofunded by European Union and the

Ministry of National Education of Greece.

References

[1] R.E. Haralick, K. Shanmugam, I. Dinstein, Textural

Features for Image Classification, IEEE Transactions

on Systems, Man and Cybernetics, Vol. SMC-3, No.

6, Nov 1973

[2] J.L. Hennesy & D.A. Patterson, Computer Architec-

ture, A Quantitative Approach, Morgan Kaufmann,

May 2002

[3] D.E. Maroulis, D.K. Iakovidis, S.A. Karkanis, D.A.

Karras, CoLD: a versatile detection system for col-

orectal lesions in endoscopy video frames, Computer

Methods and Programs in Biomedicine, vol 70, no. 2,

pp. 99-186, Elsevier Science, 2003

[4] W. Luk, P. Andreou, A. Derbyshire, F. Dupont-De-

Dinechin, J. Rice, N. Shirazi and D. Siganos, Field-

Programmable Logic: From FPGAs to Computing

Paradigm, Springer-Verlag, Berlin, 1998

[5] M. Nibouche, A. Bouridane, D. Crookes, O. Ni-

bouche, An FPGA-based wavelet transforms copro-

cessor, in Proc. IEEE Int. Conf. Image Processing, pp.

194-197, vol.3, 2003.

[6] H. Hikawa, Implementation of Simplified Multilayer

Neural Network with On-chip Learning, Proc. of the

IEEE International Conference on Neural Networks

(Part 4), Vol. 4, 1999, pp 1633-1637.

[7] T. Nakano, T. Morie, and A. Iwata, A Face/Object

Recognition System Using FPGA Implementation of

Coarse Region Segmentation, SICE Annual Confer-

ence 2003, pp. 1418-1423, Fukui, Aug. 4-6, 2003.

[8] K. Heikkinen and P. Vuorimaa, Computation of Two

Texture Features in Hardware, Proceedings of the 10th

International Conference on Image Analysis and Pro-

cessing, Venice, Italy, pages 125-129, September 27-

29, 1999.

[9] K.C. Chang, Digital Design and Modeling with VHDL

and Synthesis, IEEE Computer Society Press - Wiley,

1997

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 


	footer1: 


