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Abstract

In this paper a new method for on-line signature authen-
tication will be presented, which is based on a event-string
modelling of features derived from pen-position and pres-
sure signals of digitizer tablets. A distance measure well
known from textual pattern recognition, the Levenshtein
Distance, is used for comparison of signatures and classifi-
cation is carried out applying a nearest neighbor classifier.
Results from a test set of 1376 signatures from 41 persons
are presented, which have been conducted for four different
feature sets. The results are rather encouraging, with cor-
rect identification rates of 96% at zero false classifications.

1. Introduction

One of the key problems in biometrics is the intra-class
variability. Here, like in other fuzzy processes in the analo-
gous world, we are confronted with the fact that nearly no
two structures are completely the same although they are of
identical origins. To address this problem, algorithms for
inexact matching may be applied in order to get a value of
the similarity of two structures. Such structures can e.g. be
text strings, biological patterns like DNA sequences or fea-
tures of some biometric modality.

One possible approach to solve this inexact matching
problem known from textual pattern recognition is the edit
distance, which defines a way to measure the difference
or distance between two strings by transforming one string
into the other, applying a series of edit operations on indi-
vidual characters. For every character in the first string, a
sequence of the operations insert, delete and replace can be
performed to transform that string into the other. The edit
distance between two strings is then defined as is the mini-
mum number of edit operations needed to transform the first
string into the second. Since the scientist V. I. Levenshtein
introduced that distance [3], it is commonly known as Lev-
enshtein distance.

Instead of just counting the number of operations, scores
can be used. For example, it is possible to weight the cost
for deletion of a character higher than replacing it with an-
other character. The scoring either can be used with respect

to operations or, in addition to that, with respect to indi-
vidual character values to which operations are performed.
Replacing of a character i by j, for example, could have
a smaller score than replacing s by t. To model this op-
eration weighting, vectors for operations insert and delete
and a matrix for operation replace have been introduced
in the area of bioinformatics. Here, PAM and BLOSUM
are examples for such scoring matrices in bioinformatics[1],
where the alphabet in DNA sequences comparison consists
of amino acids instead of text characters.

The edit distance D between two strings S1 and S2 can
be calculated by a dynamic programming algorithm and can
be formally described by the following recursion:

D(i, j) := min[D(i − 1, j) + wd,

D(i, j − 1) + wi,

D(i − 1, j − 1) + wr]

D(i, 0) := D(i − 1, 0) + wd

D(0, j) := D(0, j − 1) + wi




∀i, j > 0

D(0, 0) := 0

where i and j are lengths of strings S1 and S2 respectively
and wi, wd, wr are the scores of operations insert, delete
and replace. The resulting value D thus becomes smaller
with increasing similarity of the two strings S1 and S2. For
our initial evaluation of the Levenshtein Distance in respect
to online signature authentication, we have used an sim-
plified weighting. The weight score has been set to 1 for
each operation, except for replacing of a character by itself,
which is scored 0.

2 Adaptation to Online Signatures
In order to use Levenshtein distance for on-line signature

authentication – in other words: for comparing of two sets
of on-line signature sample data – it is necessary to repre-
sent signature data as strings or sequences of codes. In our
case the raw data of writing signal is a sequence of discrete
pen information tuples – pen tip position on writing pad and
pressure. From that data a pen movement can be interpo-
lated and some additional signals can be derivated, e.g. ve-
locity and acceleration. Fig. 1 shows a 2-dimensional writ-
ing sample and fig. 2 shows raw and some velocity signals
of the sample.

0-7695-2128-2/04 $20.00 (C) 2004 IEEE



y

x

Figure 1. Writing Sample
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Figure 2. Raw and derivative signals

The basic idea of our approach is based on events and can
be described as follows: The function curves of movement
– e.g. x(t), y(t) and p(t) – have a series of local extrema
(minima, maxima). Every occurrence of extrema can be in-
terpreted as an event. In addition to extrema there are other
kinds of events. One of them is the gap between two writ-
ing segments. (Note we define a segment as the signal at
times between a pen-down and the subsequently following
pen-up.) Dependent on hardware sampling rate and writing
velocity some signatures have segments with too few posi-
tion data to gain reasonable velocity information. In some
cases however, if short segments have more than one piece
of position data, we additionally can get the stroke direction
(e.g. from left to right). In order to achieve a string-like
representation of the online handwriting samples, we ana-
lyze the sample signals, extract the feature events ε listed
in the following table and arrange them in temporal order
of their occurrences, leading to event strings; examples for
such event strings are presented in fig. 3

By coding the event features with string codes as denoted
in column ”S-Code” in tab. 1, we can yield string represen-
tations as illustrated in fig. 3. In this coding, we model local

E-Code S-Code Description
ε1 . . . ε6 xXyY pP x-min, x-max, y-min, y-max, p-min, p-max
ε7 . . . ε12 vxVxvyVyvV vx-min, vx-max, vy-min, vy-max, v-min, v-max
ε13 . . . ε14 gp gap, point
ε15 . . . ε22 short events; directions: ↑,↗,→,↘, ↓,↙,←,↖

Table 1. Possible event types

maxima with capital letters – X , Y , P (pressure), V , Vx, Vy

– and local minima with lower case letters – x, y, p, v, vx,
xy – and the gap event with g. For our further, more general
discussion, we will synonymously make use of enumerated
annotation of the event types (ε1 . . . ε22) as can be seen in
column ”E-Code” of tab. 1.

Fou our example in fig. 1 there are six segments, each of
which is followed by a gap.

3rd segment: (Xp)vxVyxY PyV pv(XVxvy)PpPpPg
4th segment: XPyg
5th segment: pXPxvypPpvyXvPpPg
6th segment: (XP )vypyxPY g

Figure 3. Events string for segments 3 to 6

A problem arising from this coding is, that due to the
sampling at a discrete sampling rate, events may occur
pseudo-simultaneously. This effect is modelled by multi-
ple symbols in parenthesis, denoting events occuring syn-
chronously. With these event sequences, we have adequate
input data for the determination of edit distances of online
writing samples e.g. signatures, if we find a way to handle
synchronous events. One possible way to handle simultane-
ous events is, to treat them as just one combination event,
requiring the definition of scores for edit operations on those
combination events.

Let E = {ε1 . . . εn} be the set of n possible events and
be εcom ∈ E∗ a combination event consisting of two or
more synchronous events out of E. In order to handle the
simultaneity of event occurence, we define the scores of op-
erations of insertion and deletion of εcom as the sum of the
cost of the respective individual operations:

wins,εcom :=
∑

εi∈εcom

wins,εi wdel,εcom :=
∑

εi∈εcom

wdel,εi

Although, depending on the degrees of freedom, the weight
determination for replacement of combination events can be
modelled in very complex manners, in our first evaluation,
we define simplified replacement weights as the minimum
operation score of a member event, as per the folling equa-
tion.

wrep,εcom
1 ,εcom

2
:= min[wrep,εi,εj ] i, j ∈ εcom

1 , εcom
2

Due to its nature, the average edit distance is linearly de-
pendent to the string lengths of both strings. For example,
two different signatures of a person with a long name have
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a larger distance than two different signatures of a person
with a shorter name. Therfore, for application in a biomet-
ric authentication system, normalization is required. In our
approach, normalization is performed with respect to the
distance of the event string length. The original Levenshtein
distance will be adapted by introducing a divisor i+ j (sum
of string lengths). To make allowance of the problem that
now someone could attack the system by entering a very
large writing sample with a very long event string, we also
include a compensation factor R to the original distance. R
is the relation of the larger length to the smaller one. The
resulting adapted Levenshtein distance D is defined as

D(i, j) :=
D(i, j)R(i, j)

i + j
R(i, j) :=

{
i
j

if i > j
j
i

else

The adopted Levenshtein distance has been integrated in
an evaluation system for online handwriting authentication,
as outlined in the following figure. Test results of our initial
evaluation will be presented in the following section and
have been obtained with the weight parameter setting fixed
to the values described in the first section.

Raw data Derivative data

Detecting of writing events

Levenshtein chain

Computing distance
Signature

Decision Threshold

database

Figure 4. Model of Authentication Process

3. Test Results

The test environment consists of verification and identifi-
cation tests. Basis of the tests is a database of 1376 writing
samples from 41 persons. Writing samples are structured
based on a classification presented in [6] into authentic,
random forgery, blind forgery, low-force forgery and brute-
force forgery samples. The samples were taken from three
different digitizer tablets (Wacom USB, Cintiq 15, Intuos 2)
and for the initial tests, only signature semantics have been
taken into account.

The organization of our test set can be described as fol-
lows: Let n be the number of authentic samples of a per-
son. We choose randomly m out of them build the reference
sample set, whereas the remaining are verification or iden-
tification trials. m := �n/2�, but if m > 10 then m := 10.
In total, we yield 157 enrollment samples, 748 authentic,
64 blind forged, 217 low-force forged and 190 brute-force
forged samples for our database.

In our verification tests, each acquired sample from the
test set gets compared to all reference samples of a person.
The verification is positive if the smallest distance of the

acquired sample to the reference samples is smaller than a
threshold (nearest neighbor classifier). Fig. 5 shows the
FRR and FAR (false rejection/acceptance rate) results as
function of the threshold for our verification tests. To ex-
amine the influence of different event types, the tests have
been conducted separatly for four different event type sets.
The first set (a) consists of all available event types, whereas
the second set (b) consists of short and position events. The
event types in third set (c) are short and velocity events. In
fourth set (d) there are only position events. Fig. 5 shows
resuls using event type sets (a) to (d).
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Figure 5. Verification test results

Using the same test environment, identification tests
have been performed. The test has been organized as fol-
lows: Having an acquired writing sample, the enrollment
sample with the least distance has been determined. If both
samples, enrollment and acquired, are from the same origi-
nator we classify the identification as correct. Also, identi-
fication is classified correctly, if a forgery against a person
is identified as that person. If another person than the orig-
inator of the acquired sample is identified we define this
occurance as an incorrect identification. The same applies,
if more than one persons have enrollment samples with the
same least distance. Table 2 shows the identification rates
for authentic identification and for forgery trials. Identifi-
cation rates are shown for four different event type sets as
described before.

auth blind low brute
correct (a) 96.4% 20.3% 40.1% 22.1%
correct (b) 98.8% 21.9% 65.9% 41.6%
correct (c) 53.5% 7.8% 36.4% 22.6%
correct (d) 98.4% 21.9% 61.8% 37.9%

Table 2. Correct identification rates
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By introducing a threshold for maximal acceptable dis-
tance for a classification, we get another category for re-
sults additionally to correct and incorrect identifications –
the category of non-identification. Nobody is identified, if
the least distance is greater than the threshold. Fig. 6 shows
the correct and incorrect identification rates for authentic
and forged writing samples with respect to such a maximum
identification distance threshold.
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Figure 6. Identification test results

It can be seen, that the EER (equal error rate) for veri-
fication tests is rather low for event type sets b and d (only
using position feature events) as compared to the other two
sets. At first glance, this appearance appears inconsistent
with observations published earlier, like [4], where pressure
and velocity features have been identified as significant for
on-line signature authentication. In our scenario however,
one explanation for negative influence of pressure and ve-
locity based feature events could be high-frequency noise
in those signals (see fig. 2). In summary, it can be stated
that we have achieved a correct identification rate of >96%
and incorrect rate of 0% at a operating point for a threshold
of 0.15, which is a quite encouraging result for our initial
evaluation.

4 Conclusion and Future Work
We have presented a new approach for online signature

authentication, which is based on event-string modelling,
determination of the Levenshtein distance and a nearest-
neighbor classifier. Tests performed on a reasonably large
database have shown good results for our method, both for
verification and identification problems. By choosing ade-
quate event feature sets, equal-error-rates (EER) below 2%

could be achieved in verification tests for non-intensional
forgeries and in our identification evaluation we could de-
termine an operating point leading to a correct identifica-
tion rate of 96% at zero-false identifications. Since our
approach is invariant against time shift between two com-
pared writing samples, it eliminiates the necessity for a time
warp process, which is required in other systems which use
functional interpretation of writing signals. Therefore, the
method can be implemented in a computationally efficient
way.

However, the test results have shown an increase of the
False-Acceptances of roughly a magnitude, once the system
is exposed to intentional forgeries. This obervation con-
firms test results of earlier work in the area of evaluation of
handwriting based biometrics [6].

Our future work will include additional tests of this
method with writing samples of additional other semantic
classes than signatures, as suggested in [5].

Furthermore, optimization of weight vectors and weight
matrix and the composition of the weights for combination
events, as well as elimination of the noise factor in pressure
and second-order based features (e.g. velocities), using a
frequency filter should allow improvements to the accuracy
of our approach.
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