Loading [a11y]/accessibility-menu.js
Graph manifolds from spectral polynomials | IEEE Conference Publication | IEEE Xplore

Graph manifolds from spectral polynomials


Abstract:

Graph structures have proved computationally cumbersome for pattern analysis. The reason for this is that before graphs can be converted to pattern vectors, correspondenc...Show More

Abstract:

Graph structures have proved computationally cumbersome for pattern analysis. The reason for this is that before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph-features which can be encoded in a vectorial manner. We explore whether the vectors of invariants can be embedded in a low dimensional space using a number of alternative strategies including principal components analysis (PCA), multidimensional scaling (MDS) and locality preserving projection (LPP).
Date of Conference: 26-26 August 2004
Date Added to IEEE Xplore: 20 September 2004
Print ISBN:0-7695-2128-2
Print ISSN: 1051-4651
Conference Location: Cambridge, UK

Contact IEEE to Subscribe

References

References is not available for this document.