Abstract:
We propose a modified expectation-maximization algorithm that approximates an empirical probability density function of scalar data with a linear combination of Gaussians...Show MoreMetadata
Abstract:
We propose a modified expectation-maximization algorithm that approximates an empirical probability density function of scalar data with a linear combination of Gaussians (LCG). Due to both positive and negative components, the LCG approximates inter-class transitions more accurately than a conventional mixture of only positive Gaussians. Experiments in segmenting multi-modal medical images show the proposed LCG-approximation results in more adequate region borders.
Published in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.
Date of Conference: 26-26 August 2004
Date Added to IEEE Xplore: 20 September 2004
Print ISBN:0-7695-2128-2
Print ISSN: 1051-4651