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Abstract

A vital task in sports video annotation is to detect and
segment areas of the playfield. This is an important first step
in player or ball tracking and detecting the location of the
play on the playfield. In this paper we present a technique
using statistical models,Gaussian mixture models (GMMs)
and Maximum a Posteriori (MAP)adaptation. This in-
volves first creating a generic model of the playfield colour
and then using unsupervised MAP adaptation to adapt this
model to the colour of the playfield in each game. This
technique provides a robust and accurate segmentation of
the playfield. In order to test the robustness of the method
we tested it on a number of different sports that have grass
playfields, rugby, soccer and field hockey.

1 Introduction

Colour is an important feature in recognition of patterns
within images. Here we address the problem of playfield
segmentation in sports. In our case we will focus on sports
where the playfield is grass. The technique we present here
could, however, be used for any type of playing area, such
as a basketball or tennis court.

a) b) c)

Figure 1. Images from soccer and rugby.

While the colour of grass is generally green, this colour
can vary depending on the individual playfield, the presence
of shadows or the viewing angle. There is also a lot of noise
present in the images from sports videos. This noise can
come from green players shirts, green in the crowd or ad-
vertising signs (Figure 1b). The amount of this noise also
depends on the sport. In soccer due to the nature of the
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game there are many wide shots where the majority of the
image is the playfield (Figure 1a). In rugby however there
are more medium and close shots with many players gath-
ered in the same area of the playfield (Figure 1c). The player
close up in Figure 1b shows a case where green is the dom-
inant colour but there is no grass in the image. So any un-
supervised segmentation technique must be general enough
to account for the variations in playfield colour, while being
focused enough to filter noise in the image.

1.1 Colour Representation

It is important for a colour representation to be invari-
ant to different viewing angles and to different illumination
conditions. The standardRed, Green, Blue(RGB) colour
space represents not only the colour but also the brightness
and so is not invariant to illumination conditions.

A common transformation from RGB space is toHue,
Saturation, Value(HSV) space. The HSV colour represen-
tation is based on the achromatic axis of the RGB space,
whereR = G = B. The values for H, V and S are given by

H = arctan(
√

3(G − B), 2R − G − B),

V =
(R + G + B)

3
, S = 1 − min(R, G, B)

V
.

In HSV space, as we approach the achromatic axis the sat-
uration approaches zero, the value of the hue becomes un-
stable. So acromatic pixels, or near achromatic pixels, with
no colour, will have hue value with no meaning [9]. These
achromatic pixels are a source of noise in the hue space, be-
ing given hue values that do not correspond to their actual
colour.

In order to represent a colour in a way that is invariant
to intensity and is also less effected by acromatic pixels we
use cromaticr andg as features [6]. These are derived by
normalisingR andG with respect to the intensity so

r =
R

R + G + B
andg =

G

R + G + B
.

We are also able the shorten the feature vector by one asb

is linearly dependent onr andg.



1.2 Previous Work

Previous approaches to playfield segmentation can be di-
vided into those that require human intervention during test-
ing and those that are unsupervised. One method needing
intervention is to build a model for the colour and then set
the threshold for recognition during the test [4]. We believe
an automatic solution to this problem would prove more
useful in any video annotation system.

Previous work on unsupervised methods of playfield ex-
traction has included using statistics of RGB values in each
frame [2]. This method assumes that in each frame the play-
field is the largest area in the image, however this if often
not the case (Fig 1b). One unsupervised method which
makes no prior assumption on the nature of the data is
simply to take a predefined range of the hue, for exam-
ple 1

3π ≤ H ≤ 5
6π, as grass [10]. Another method col-

lects statistics on the hue for the first five minutes of the
video [11]. This method relies on the assumption that the
most dominant single colour in the first five minutes will
be the colour of the playfield. This is, however, not always
the case: maybe the play might not start until five or ten
minutes into the broadcast or there may be a long break in
the play when the playfield is not visible. While these tech-
niques often work well in ideal conditions, for example in
soccer data as shown in Figure 1(a), they are deemed to fail
in noisy conditions where grass is not the dominant colour,
such as rugby games with players in green shirts, where the
playfield has turned to mud or grass in shadow.

1.3 Our Approach

The method we propose is unsupervised and also robust
to large amounts of noise in the image. This method in-
volves modeling colour using aGaussian Mixture Model
(GMM) and then adapting this model usingMaximum a
Posteriori (MAP) adaptation [5]. A GMM is trained on
grass images from a variety of different soccer games. This
creates a general model of playfield grass. We train a noise
model from images containing no grass. The features used
to train these models are the chromaticr andg features. A
validation set is used to the hyperparameters of the algo-
rithm. The models are then tested on games of rugby, field
hockey and soccer not used in the training set. During the
testing, the grass model is adapted, using MAP adaptation,
to the colour of the playfield in each of the test games.

2 Gaussian Mixture Models (GMM)

In order to model the colour of grass inx = (r, g) space
we use a 2 dimensional GMM. In a GMM the likelihood of
the datax is given by

p(x) =

N∑

i=1

wi � N (xi; µi, Σi) (1)

whereN is the number mixtures in the model,W = {wi}
is the set of mixture weights,µ = {µi} are the set of means
and Σ = {Σi} is the set of convariance matrices of the
Gaussian mixture. Hence a GMM is fully parameterised by
θ = {W, µ, Σ}. In our case,Σi are diagonal matrices.

Given a training data setX of observations,θ is esti-
mated using theMaximum Likelihood(ML) principle, that
is the likelihood ofX is maximised with respect toθ: So
we select the parametersθ̂ such that,

θ̂ = arg max
θ

p(X |θ). (2)

The normal method of training GMMs is to use theExpec-
tation Maximization(EM) algorithm [3].

3 Maximum a Posteriori Adaptation (MAP)

The ML principle can be applied when there is labeled
data, for example grass data only. This is suitable for offline
learning. In online learning, as all data may not correspond
to the right label, prior knowledge is necessary to constrain
the space of solutions forθ. This can be achieved using
MAP adaptation, where prior knowledge is given by a prior
distribution overθ, p(θ). Using the MAP principle we select
θ̂ such that it maximizes thea posteriorilikelihood,

θ̂ = argmax
θ

P (θ|X) = arg max
θ

p(X |θ) � p(θ). (3)

The contributions of the data likelihood,p(X |θ), and the
prior distribution,p(θ), can be balanced by introducing a
weighting factor,α, in equation 3. So, in pratice we max-
imisep(X |θ)(1−α)

� p(θ)(α).
A common use for MAP adaptation is in speech and face

verification [7], in this case a general world model of speak-
ers or faces is trained. This model is then adapted, using
MAP, to the particular speaker or face. In our case, we train
a general model of grass and then use MAP to adapt this
general model to the specific colour of the grass in each
particular game.

When using MAP adaptation, different parameters can
be chosen to be adapted [8]. In our case we adapt all the
parameters. We adapt the weights because we may have
different green colours within the playfield area, in which
case we want to model these different colours with different
mixtures. When only one colour is present the weight of the
other mixtures will be adapted to zero. We also adapt the
variances in order to move from a broader generic playfield
model to a model focusing on the particular playfield in the
current data.

The parameters of a mixturei are adapted using the fol-
lowing set of update equations [5] [7]

ŵi = α � w
pr
i + (1 − α) � wml

i , (4)

µ̂i = α � µ
pr
i + (1 − α) � µml

i , (5)
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Σ̂i = α � (Σpr
i + (µ̂i − µ

pr
i )(µ̂i − µ

pr
i )T )

+(1 − α) � (Σml
i + (µ̂i − µml

i )(µ̂i − µml
i )T ),

(6)

whereα is a weighting factor on the prior parameters,w
pr
i ,

µ
pr
i andΣpr

i are the prior weight, mean and variance. The
parameters estimated by ML,wml

i ,µml
i andΣml

i , are given
by the following equations [1]

wml
i =

1

M

M∑

i=1

p(i|xi, θ), (7)

µml
i =

∑M

i=1 xip(i|xi, θ)∑M

i=1 p(i|xi, θ)
, (8)

Σml
i =

∑M

i=1 p(i|xi, θ)(xi − µml
i )(xi − µml

i )T

∑M

i=1 p(i|xi, θ)
, (9)

whereM is the number of data examples.

4 Algorithm description
In our approach to this problem we train two GMMs.

One is a general model of playfield colour and the other is
a noise model. Both of these models are trained offline. In
recognition we use a likelihood ratio of the playfield model
and the noise model in preference to applying a fixed thresh-
old to the playfield likelihood.

Starting from the offline trained model (θ
grass
0 =

θ
grass
offline), the process consists of iterating between two

steps: (1) selecting dataXk to be used for adaptation (2)
updatingθk from θk−1 usingXk.

4.1 Selecting Adaptation Data
The data to be used for adaptationXk are gathered from

pixel values extracted from images sampled every second.
The image pixels used for adaptation are selected in a two
step process.

1. Colour Selection. We recognise grass pixels by
thresholding the ratio of the likelihood of a pixel feature
with respect to the current grass modelθk and its likelihood
with respect to the noise model, so a pixel is labeled as grass
if

p(Cp|θgrass
k )

p(Cp|θnon−grass)
> d, (10)

whereCp is the(r, g) feature for pixelp andd is a threshold
determined on a validation set.

2. Prior and Morphological filtering. For each frame,
a binary image is created using equation (10). As there is a
higher prior probabilty of noise in the top half of the image,
for example the stadium, advertisments, the crowd or trees,
we consider only the bottom half of the image for potential
adaptation pixels. This binary image is then morphologi-
cally filtered using the open operation which is a combina-
tion of erosion and then dilation. In our case we use a5× 5
square structuring element for this operation. This filtering
eliminates small areas of noise and leaves only larger areas
of pixels for adaptation.

4.2 Updating Model Parameters

The parameters are updated every 30 seconds using data
Xk and applying equations (4) to (9). During adaptation we
also control the weightingα on the prior model by making
α dependent on the number of pixels that have been selected
for adaptation according to

αk = 1 − Np

c � f � s
(11)

whereNp is the number of pixels selected for adaptation
over the past 30 seconds,f is the number of frames, in our
case typically 30,s is the number of pixels in each frame
andc is a tuning parameter which was set on the validation
set. So it can be seen that if the number of pixels found for
adaptation is very small then a larger weight is given to prior
parameters. In this way the rate of adaptation depends on
the data. This is important if the playfield is not dominant
during the time we collect the adaptation data. If we have
a long interuption in a game, resulting in many crowd shots
or player close ups, then our model will give more weight
to the prior model, avoiding adaptation to noisy data.

The output from the algorithm is a binary image pro-
duced by the likelihood ratio of grass to noise and morpho-
logical filtered with a smaller3 × 3 structuring element in
order to smooth the image. These are the image shown in
the results section in Figure 2.

5 Experiments and Results
In our experiments, we divided the data into three sets:

a training set of data from 6 different games of soccer, a
validation set of data from 4 different games of soccer and a
testing set of data from 8 games of rugby, 2 games of soccer
and one game of field hockey.

The offline playfield colour model was trained on 163
grass images taken from the training set and a noise model
was trained using 87 images containing no grass. The val-
ues ofc, the adaptation rate tuning parameter, andd, the
recognition threshold, were then adjusted for optimal per-
formance using the validation set. The optimal sampling
rate, one frame per second, and adaptation interval, every
30 seconds, were also selected using the validation set.

The performance of the models was tested on a variety
of different games with grass playfields to show the generic
nature of this method. We tested our algorithm against sim-
ple hue segmentation [10] and also against the technique
of finding the mean and standard deviation of the dominant
hue for the first five minutes of the game [11].

In order to have a quantitative measure of the perfor-
mance of our algorithm, we extracted 20 images from each
of three games of rugby, one game of soccer and one game
of field hockey. These images were taken at exactly 30 sec-
ond intervals from the start of each recording and then the
play field was segmented by hand. It is a coincidence that 30
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Figure 2. Results for the techniques tested.
1st column: original image; 2nd column: hue
thresholding [10]. 3rd column: dominant
hue [11]. Fourth column: our technique

Game Simple hue Statistical hue Adapted
thresholding [10] thresholding [11] model

Ire vs Arg 0.812 0.865 0.932
Eng vs SA 0.740 0.881 0.927
Eng vs Sam 0.858 0.918 0.963
Field hockey 0.828 0.840 0.952
Soccer 0.835 0.922 0.953

Table 1. Results for each game showing the
average recognition rate.

seconds is also optimal adaptation rate. As a performance
measure, we simply used the recognition rate of the pixel
label. The results of all these tests can be seen in Table 1.
In these empirical tests, the method we propose performs
better than either of the other methods.

Results for some individual frames are shown in Fig-
ure 2. In the first image it can be seen that the simple thesh-
olding of the hue, while recognising all the grass also pro-
duces a lot of noise from the background. The statistical
thresholding technique has a tendency to underestimate the
noise variance, especially when different shades of green
are present (here part of the play field in shadow is not
recognised). In our method it can be seen that using more
than one Gaussian mixture allows for better recognition of
both sections of the field with very little noise in the back-
ground. Similarly, for the other images, it can been seen that
the algorithm we propose produces a more accurate and ro-
bust result.

6 Conclusions
In this paper we present an automatic adaptation method

to segment the playfield in sports videos. In our algorithm,
starting from a broad general model of the playfield colour
learned off-line, a MAP adaptation step is iteratively applied
to drive the general model to a specific one associated with
the available video stream. It is very important when using

adaptation to control both the data that you adapt with and
the rate of adaptation. We control the data for adaptation
by using the prior model for recognition and morphological
filtering to eliminate potential noise. The rate of adapta-
tion is dynamically controlled depending on the amount of
adaptation data that has been collected. The results clearly
show that our proposed algorithm gives a more accurate and
robust segmentation of the play field than current unsuper-
vised techniques. The models used in our approach are also
generic to any sport played on grass, as can be seen in the
test result for models trained on soccer but tested on rugby
and field hockey. While we have not done any experiments
with playfields of other colours, such as basketball or ten-
nis, clearly this technique could be implemented for these
sports.

The output of the playfield segmentation is currently be-
ing used to generate features for event recognition with
rugby data. The binary images are also being used as a
starting point for player and ball tracking.
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