Pixel position regression - application to medical image segmentation | IEEE Conference Publication | IEEE Xplore

Pixel position regression - application to medical image segmentation


Abstract:

Pixel position regression (PPR), an automatic supervised method for image segmentation, is presented. The method uses a set of corresponding points indicated in each trai...Show More

Abstract:

Pixel position regression (PPR), an automatic supervised method for image segmentation, is presented. The method uses a set of corresponding points indicated in each train image. For each point in this set, the mean position in all train images is determined. By warping the set of corresponding points to their mean positions, one can associate with each position in each train image a reference position. PPR estimates the reference position from a rich set of local image features through k-nearest-neighbor regression. The deformation field thus obtained determines the segmentation. It is demonstrated that the deformation field estimate can be improved by (weighted) blurring and more sophisticated methods such as global modeling of the deformation field through principal component analysis and iterated regression. The method is evaluated on a set of chest radiographs in which the lung fields, heart and clavicles are segmented.
Date of Conference: 26-26 August 2004
Date Added to IEEE Xplore: 20 September 2004
Print ISBN:0-7695-2128-2
Print ISSN: 1051-4651
Conference Location: Cambridge, UK

Contact IEEE to Subscribe

References

References is not available for this document.