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Abstract 
 
In this paper, we propose an unsupervised genetic 
clustering algorithm, which produces a new 
chromosome without any conventional genetic 
operators, and instead according to the gene 
reproducing probabilities determined by Markov chain 
modeling. Selection of cluster centers from the dataset 
enables construction of a look-up table that saves the 
distances between all pairs of data points. The 
experimental results show that the proposed algorithm 
not only solves the premature problem to provide a 
more stable clustering performance in terms of number 
of clusters and clustering results, but also improves the 
time efficiency. 
 
1. Introduction 
 

Clustering is a useful technique for the applications 
in image segmentation, information retrieval, pattern 
recognition, data mining, and machine learning. 
However, in many such problems, there is little prior 
information and few assumptions about the data 
(cluster shapes, number of clusters, initial conditions, 
etc.). Several algorithms require information for 
clustering, such as K-means, Fuzzy-c-means, EM, etc, 
as previous literature has stated [1-2]. However, the 
number of clusters of a data set is not given as prior 
information in most real life situations and these 
clustering systems are not able to automatically and 
efficiently form nature groups of the input patterns in 
these situations. The clustering problem in such 
situations is referred to unsupervised clustering. In the 
research of unsupervised clustering, the evolutionary 
approaches are often employed and provide good 
clustering results. Such approaches can automatically 
determine optimal number of clusters. Genetic 
algorithms (GAs) are the best-known evolutionary 
techniques [3-4]. To date, some research articles have 
dealt with these methods [5-9]. Among the GA-based 

clustering algorithms illustrated in the current literature, 
the GCUK (Genetic Clustering for Unknown K) 
method proposed by Bandyopadhyay and Maulik [9] is 
one of the most effective. However, it is very time-
consuming due to its usage of string representation (or 
real-number encoding) for encoding clusters, which 
require a great deal of time for floating-point 
computation. In our previous paper [10], we proposed 
an unsupervised clustering method, called the PMCC 
algorithm, that outperforms the GCUK method in 
terms of both time efficiency and the clustering results. 
The PMCC algorithm, based on population Markov 
chain [10], uses the gene reproducing probabilities of 
Markov chain modeling to perform evolution without 
any genetic operations, so that it saves a great deal of 
computational time required by the canonical genetic 
operations. Selection of cluster centers from the dataset 
enables construction of a look-up table that saves the 
distances between all pairs of data points, and thus the 
repeated evaluation of fitness during the evolution 
process can be avoided. Nevertheless, even though the 
PMCC algorithm behaves quite well when compared 
with the GCUK method, it still has the problem of 
premature convergence, especially when the number of 
clusters included in the data set tends to be large. This 
was our motivation to propose an improved version of 
the PMCC method: the WPMCC (Winner Population 
Markov Chain) method. The results of our experiments 
show that this improved version not only solves the 
premature convergence problem providing a more 
stable clustering performance in terms of number of 
clusters and clustering results, but it also improves the 
time efficiency. 

This paper is organized as follows: Section 2 
illustrates the preliminary of the canonical genetic 
algorithms. In Section 3, the proposed clustering 
algorithm based on winner-population Markov chain is 
introduced. Experimental results and discussion are 
given in Section 4, with our conclusion in Section 5. 
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2. Preliminary 
 

Genetic algorithms are search and optimization 
algorithms based on the principles of natural 
evolution. They have been frequently used in 
unsupervised clustering. In many theoretical studies 
of GAs [11-13], the population Markov chain models 
have been adopted. Yong Gao et al. [13] proposed a 
novel genetic algorithm (called GANGO2) which 
needs neither to maintain a population nor to use the 
conventional genetic operators, and yet has the same 
search mechanisms as the classical GAs. They can be 
implemented by directly sampling the transition 
probability distributions instead of applying the 
conventional genetic operators to evolve the 
populations. The theoretical analyses and their 
proposed theorem are introduced in this Section.  
 
Definition: Given a population X = (X’1, …, X’P), X’i

= (xi1, …, xil), i = 1,…, P, for any positive integer 1≤
j ≤ l, let Ij

0 and Ij
1 denote the sets of indices of all the 

chromosomes of the population X that have 
respectively a zero or one at the j-th gene position,
that is,  

 
 
 

 
 
Theorem: Consider the GA population Markov chain 
{X(k), generation k≥0}. Given X(k) = X, the 
conditional distribution of the j-th component xij(k+1) 
of individual X’i(k+1) is a zero-one distribution with 
the parameter uniquely determined by the 
characteristic of X and the mutation probability pm as

pj(k+1,0)=P{xij(k+1)=0|X(k)=X}=aj+(1-2aj)pm  (2)
pj(k+1,1)=P{xij(k+1)=1|X(k)=X}=bj+(1-2bj)pm  (3)

Although the over-all performance of our previously 
proposed clustering algorithm, called PMCC, based 
on GANGO2 is fine, it still has some problems: (1) 
Although the fitter chromosome can immediately
contribute to the creation of the other chromosomes
of the later population, the initial population 
sometimes tends to influence the outcome during the 
entire evolution process. (2) The values of F(X(k+1)) 
and Fj

1(X(k+1)) tend to unrestrictedly expand, and the 
effects will decay in the later and fitter chromosomes. 
(3) The average threshold, t(k+1), is a cumulative 
sum of the fitness values from duplicate individuals,
so the use of this threshold tends to prematurely 
converge, especially when the dataset has more than 7 
clusters.  

 

3. The Proposed Clustering algorithm 
 

This section describes in more depth how the 
proposed method is implemented.  

3.1. Binary Representation 

The cluster centers are selected from the data set. 
The chromosome length is equal to the size of the data 
set. The j-th gene of a chromosome corresponds to the 
j-th data point in the data set. If the j-th data point is 
selected to be a cluster center, the allele of the j-th gene 
in the chromosome is set to “1”; otherwise “0”. The 
number of clusters, denoted by K, is assumed to lie in 
the range [Kmin, Kmax], where Kmin is set to 2, and Kmax 
is commonly set to NN or 2/ , where N is the 
chromosome length (or the size of the input data), 
unless otherwise specified.  

3.2. Population Initialization 

Let P be the population size. First, an integer Kr for 
the r-th chromosome, r = 1, 2, …, P, is randomly 
selected from the range [Kmin, Kmax], and then Kr 
distinct data points are randomly chosen from the data 
set, the allele of the gene corresponding to the index of 
each of the chosen data points is set to “1”; while that 
of each of the remaining genes is set to “0”. For 
example, if N = 16, Kr = 3 for the r-th chromosome, 
and 3 data points randomly chosen from the data set 
have indices 3, 10, and 12, respectively, then the 
chromosome should be 0010 0000 0101 0000. 

3.3. Fitness Function Evaluation 

The clustering results should have the following 
properties: (1) homogeneity within the clusters and (2) 
heterogeneity between clusters. To evaluate the 
clustering results, several cluster validity measures 
have been proposed [1, 14, 15]. We employed the 
Davies-Bouldin index (DB index) [14] to measure the 
validity of the clusters, since our experiments showed 
that the DB index is better than other indices such as 
the Dunn index and the XB index. As given in 
Equation (6), the DB index is a function of the ratio of 
the sum of the within-cluster scatter to the between-
cluster separation, which provides an appropriate 
measurement. In Equations (4) and (5), Si,q denotes the 
measure of dispersion of a cluster Ci, i = 1, …, k, 
appearing in a chromosome Ch. Ri,qt denotes the 
maximal similarity index of Ci to the other clusters and 
dij,t ≡ d(Ci, Cj) denotes the Minkowski distance of order 
t between Ci and Cj (q = 1 and t = 2 in this paper.) As 
given in Equation (7), the fitness function for our 
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proposed algorithm is defined as the reciprocal of the 
DB index.  
 

 

 

 

 
 
 
 
 
 
3.4. Winner-Population Markov Chain 

Clustering Algorithm 
 

The winner-population Markov chain clustering 
algorithm (WPMCC) is given as follows: 
Step 1. Set k ← 0, and generate initial population X(0) 

= {X’(1), X’(2), …, X’(P)}, compute F(X(0)), 
Fj

1(X(0)), bj(k), and pj(k, 1), 1 ≤ j ≤ l, according 
to Eq.s (1 & 3), and set t(0) ← Max

Pi≤≤1
{f(X’(i))}. 

Step 2. //Initializing F(X(k+1)) and Fj
1(X(k+1)) 

F(X(k+1)) ← t(k),  t(k+1) ← t(k), 
for j ← 1 to l do 
   Fj

1(X(k+1)) ← bj(k) × F(X(k+1)) 
Step 3. //Generating a new population 

for i ← 1 to C do 
    Independently sample pj(k, 1), 1 ≤ j ≤ l, to get 
      a chromosome X’(i) ← (x1(i), x2(i),…, xl(i)). 
    if ( f(X’(i)) > t(k) ) then 
       if (t(k+1) < f(X’(i)) then t(k+1) ← f(X’(i)), 
       //update F(X(k+1)) and Fj

1(X(k+1)) 
       F(X(k+1)) ← F(X(k+1)) + f(X’(i)) 
       for j ← 1 to l do  
           if xj(i) = 1 then  
              Fj

1(X(k+1)) ← Fj
1(X(k+1)) + f(X’(i)) 

Step 4. If some stopping criterion is met then stop 
else for j ← 1 to l do  
            compute bj(k+1) and pj(k+1, 1), 
        k ← k + 1 and go to Step 2. 

 
For providing more stable clustering results, we 

count the accumulative sum of the probabilities of 
population Markov chain modeling for each gene in a 
population of C chromosomes. If we set C equal to 1, 
the WPMCC algorithm becomes similar to the PMCC 

algorithm. That is, the fitter chromosomes may 
immediately contribute to the creation of the other 
chromosomes in the later population. This causes quick 
convergence and yields unstable results. Conversely, 
the greater the value of C is, the more slowly the 
WPMCC algorithm converges and more stable results 
it provides. For preventing the premature convergence, 
first, we use the maximum fitness value as the threshold 
for each population of C chromosomes. Only the 
chromosomes with fitness greater than the threshold 
can affect and change the values of F(X(k+1)) and 
Fj

1(X(k+1)). In such a way, these values would not be 
unlimitedly affected by the same individuals again and 
again. Second, we initialize the values of F(X(k+1)) 
and Fj

1(X(k+1)) for each generation to avoid unlimited 
expansion when they are modified in Step 2. Because 
chromosomes greater than the threshold become fewer 
and fewer, any chromosome produced in the later 
generations contributes more and more effect. 
 
4. Experimental Results 
 

The experiments were implemented in an 
environment using the Intel Centrino-Mobile 1.3GHz 
CPU, 30G HDD, 256M RAM and Microsoft Windows 
XP. In our experiments, 100 artificial and random data 
sets with a variety of numbers (in [Kmin, Kmax] = [2, 11]) 
of clusters were tested to evaluate the performance of 
the proposed method. These data sets are publicly 
available on the Website: http://pria.cs.tku.edu.tw. In 
our experiments, pm is automatically estimated by the 
equation  pm                        , pc = 0.9 as required in 
[16], P = C = 100, G = 100, and [Kmin, Kmax] = ].2[ N,  
Finally, the DB index was adopted to measure the 
validity of the clusters. For comparison, we performed 
both our methods and the GCUK method 10 runs on 
each data set. Figure 1 shows the average maximum 
fitness values resulting from these methods, having 
been tested 10 runs for each data set, respectively. It 
demonstrates that on the average the WPMCC 
algorithm indeed provides better fitness values than any 
of the other methods, especially when the dataset has 
more than 5 clusters. Figure 2 shows the average 
processing time per data point required by each method 
tested 10 runs for each data set, and demonstrates that 
the WPMCC algorithm is about 3 to 7 times faster 
than the GCUK-clustering method and a little bit faster 
than the PMCC method. Our experiments also show 
that the WPMCC algorithm converges before the 15th 
generation and has greater maximum fitness values 
than any of the others.  

 
 

(7)                                         1)(

 (6)                                             1

),( where

(5)                    , }/){(
Ccluster   theofcenter   theis z where 

(4)                          ,1

1
,

,

,,,,,

ii

1

2,

DB
ChFitness

 
k

R
k

DB

-zzCCdd

dSSMaxR

zx
C

S

i
qti

tjijitij

tijqjqiijjqti

q

Cx

q
i

i
qi

i

=

=

==

+=











−=

∑

∑

=

≠

∈



 4

Average maximum fitness values

1.7

2.1

2.5

2.9

3.3

3.7

4.1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Data set index

Fi
tn

es
s

GCUK-Pm=auto
PMCC-Pm=auto
WPMCC-Pm=auto

Average processing time needed for one data point

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Data set index

Ti
m

e(
se

co
nd

s)

GCUK-Pm=auto
PMCC-Pm=auto
WPMCC-Pm=auto

5. Conclusions 
 

This paper modifies the previously proposed 
unsupervised clustering PMCC algorithm, to achieve 
an improved version: the WPMCC algorithm, which 
not only improves the premature convergence problem 
so as to provide a more stable clustering performance, 
but also improves the time efficiency. Using the 
Euclidean distance as the dissimilarity metric yields 
circular clusters. Such clusters for some of the test data 
may not as natural as those provided by people. In the 
future, we will test the other distance metric such as 
Mahalanoobis distance and point symmetry distance 
[17] against a variety of data sets with various shapes 
of clusters. In addition we are investigating the 
correlation between the convergence speed and the 
number of clusters in the data set and studying on 
similarity/dissimilarity metrics and expect to further 
improve the unsupervised clustering algorithm. 
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Figure 1. Average maximum fitness value 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. Average processing time required by each 
data point 


