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Abstract

This paper presents a 3D object recognition method that
exploits the spatio-temporal coherence of image sequences
to capture the object most relevant features. We start from
an image sequence that describes the object’s visual ap-
pearance from different view points. We extract local fea-
tures (SIFT) and track them over the sequence. The tracked
interest points form trains of features that are used to build a
vocabulary for the object. Training images are represented
with respect to that vocabulary and an SVM classifier is
trained to recognize the object. We present very promis-
ing results on a dataset of 11 objects. Tests are performed
under varying illumination, scale, and scene clutter.

1. Introduction

An ideal 3D object recognition system is able to recog-
nize many different objects and spot their presence in var-
ious environments, no matter the viewing position or dis-
tance. The research on this field has been very active in the
last decades, but the ideal system has still to come. View-
based approach to object recognition has been widely used
in the last few years [11, 12, 13, 9], mostly because it of-
fers a simple but principled way to model objects varia-
tions with respect to the viewing angle, and also because
the intuition behind it is supported by psychophysical ev-
idence [2]. Other causes of difficulties, such as scene il-
lumination, viewing distance changes but also clutter and
occlusions have been successfully addressed with the local
feature approach [7, 8, 3]. In this paper we present a tech-
nique that allows us to recognize 3D objects in realistic en-
vironments, under different viewing and scene conditions.
We combine a view-based approach with the use of local
features, obtaining object descriptions that model how the
features evolve over time. In our approach each object is
represented by an image sequence acquired in a controlled
environment. Local interest points are extracted and tracked
over the sequence with a filtering algorithm. All trajectories
(trains of features) that are stable over the sequence are used

to describe the appearance of the object under varying view-
ing conditions. The idea of building trains of keypoints is
loosely inspired to the bag of words used for example-based
text categorization [6]. Recently this idea has been reformu-
lated for the case of image categorization, leading to the bag
of keypoints [3]. The bag of keypoints approach uses a sim-
ple clustering technique to group features that carry some
visual similarity. Our method exploits both visual simi-
larity and the image sequence temporal coherence, as we
group the features that are connected by a temporal trajec-
tory. Similarly to bags of keypoints, each train of features
constitute a word in a vocabulary. We build a vocabulary
for each object of interest. We model 3D objects with a
learning from examples scheme, representing training im-
ages with respect to the object vocabulary and training a
binary SVM for each object. The multiclass nature of the
problem is captured with a one-vs-all approach. We report
very promising results on a dataset of 11 objects (Figure 1).

The paper is organized as follows. Section 2 describes
how we compute the object vocabulary, Section 3 illustrates
how we represent images with respect to the vocabulary.
Section 4 reports the results of our experiments, while Sec-
tion 5 is left to the final discussion.

2. The features vocabulary

For a given object, the first stage of our method consists
in building its features vocabulary. We consider an image
sequence acquired observing the object from different view-
points. For each image we locate interesting points on a
difference of Gaussians pyramid, and then represent each
point with a SIFT descriptor [7], that is, a vector containing
local orientation histograms around the keypoint position.

2.1. SIFT tracker

The selected features are tracked over time with an Un-
scented Kalman filter [14]. This method belongs to the fil-
tering algorithms family that are well-known for their sim-
plicity and robustness to difficult situations. Such an al-
gorithm allows us to cope with temporal detection failures,



Figure 1. The 11 objects of our dataset. (From top left: tele, teddy, dino, box, book1, duck, pino,

bambi, tommy, book2, biscuits).

and as a consequence avoids redundancies in the vocabu-
lary. The filtering methods consist in modeling the dynamic
system to be tracked by a hidden Markov process. The goal
is to estimate the values of the state x; from observations
zj, obtained at each instant. The system is described by a
dynamic equation modeling the evolution of the state and a
measurement model that links the observation to the state.
The unknown state is X = {px, Sk, dx}, Where py, is the
location of the SIFT, s;, its scale and d, its main direction.
The final system consists in:

e A state equation of s and dj, defined as a simple constant

model:
Sk Sk—1
p— 1
( dk ) ( dk—l >+7k’ ( )

where 7, is a zero-mean Gaussian white noise.

e A state equation of py specified online by an instanta-
neous motion vector of the tracked point py = pr—1 +
uy(pr—1)+ Yx, where 1y, is the zero-mean Gaussian white
noise. The variable ug(px—1) denotes the motion vec-
tor associated to a pixel py—1. This vector is estimated
with a robust parametric motion estimation technique on a
small region around py, (introducing a non linearity in the
system)[1].

e An observation z;, defined as the nearest detected SIFT
from the prediction on a given window. The observation is
then linearly linked to the state: z; = xj, + v where vy, is
the zero-mean Gaussian white noise.

Since the dynamic equation is non linear, Kalman filter is
not appropriate. Recently, Particle Filters [4] have been ex-
tensively used to deal with the non linearity of a system, but
in our case since the system is weakly non linear, the use of
the Unscented Kalman filter is both sufficient and efficient.

2.2. Virtual features

All features linked by a tracking trajectory form a train
of elements belonging to an equivalence class; we compute

the average value of all the elements, that we call a virtual
Sfeature V;, and use it as a delegate for the train. The average
values are good representatives of the original features as
the tracking procedure is robust and leads to a group of fea-
tures with a small variance. The set of virtual features form
avocabulary of features for the object: V = {V1,...,Vn}.

3. Data representation

Animage F}, after we extract local interest points, can be
seen as a collection of SIFT features F; = {f*,,..., fi }.
Once the vocabulary V is available, F; can be represented
with respect to the vocabulary, with a vector F; of N ele-
ments, that contains at each entry j the degree of similarity
between V; and the feature f{ most similar to V;. While
finding the association between V; and f}, features that ap-
pear similar to more than one virtual feature are penalized.

Since SIFT description is obtained as a concatenation
of direction histograms, the similarity between features and
virtual features can be estimated as follows:

N _ ﬂ(H?HI) _ Z?:l(min(Hi»Hz{))
e (EAE) = G, B7) = S0 s (o )

where H; is the description associated with V; and H; is as-
sociated with f;. Therefore we obtain a similarity measure
which takes values in [0, 1] and if the histograms are nor-
malized, this similarity measure is equivalent to histogram
intersection.

4. Object recognition experiments
4.1. The dataset

We acquired a dataset of 11 different objects ! (see Fig-
ure 1). The selected objects include examples of similar

IThe dataset is available on demand.



Figure 2. From top left: examples of test sets
(2-6), see text.

objects (5 plastic toys, 2 books), but at the same time are
variable enough to represent a good selection of things that
can be found in a real indoor environment. Each object
is represented by an image sequence of about 200 frames
acquired by placing the object on a turntable and observ-
ing it from different viewpoints. We use these sequences
both for building the vocabulary and as positive examples
for training the recognition system. The training set is ac-
quired in a neutral environment. For each object we ac-
quired six different test sets: (1) acquired in similar con-
ditions to the training from a similar viewpoints, (2) under
different illumination conditions, (3) at a different scale, (4)
allowing for severe occlusions(5) the object against a plain
with different background, (6) the object against a complex
and highly textured background (see Figure 2 for samples
of test sets (2-6) of an example object). We also acquired
clutter images (including various indoor and oudoor scenes)
or images of other objects to be used as negative examples
for training. The negatives set has also been enriched with
images downloaded from the Web. For each object we use
about 200 images as positive training examples, 300 images
as negative training examples. Each object has about 18 000
images of test examples.

4.2. The classifiers

For each object we build the vocabulary and then repre-
sent the training data (both positive and negative) with re-
spect to it. We then train a binary SVM classifier with a
histogram intersection kernel [10], that was proved effec-
tive on a number of applications and does not depend on
any parameter. Preliminary results that we do not report
here showed that its performances are superior to standard
kernels for the problem at hand. We deal with the multi-
class nature of the problem with a one against all approach.
The results obtained over test sets (1-4) are summarized in
Table 1. The column simple refers to the results obtained
both under similar conditions and under some illumination

Figure 3. A test image ((a)), and the SIFT
points matched with vocabularies of different
objects : (b) duck, (c) biscuits, (b) book1
(high similarity score are red).

variation (tests (1) and (2)), the column scale refers to the
results obtained on test set (3), that contains the objects at
different scale. Finally, the column occlusions report the
results obtained on test set (4), containing the objects with
various degrees of occlusions. As the recognition rates are
very high, we do not report details on the confusion among
different objects (in the case of object book2, the misses
are spread among objects tele, box, and dino). The descrip-
tion proposed captures the peculiarity of objects, and allows
us to recognize them correctly even if the possible classes
contain many similar objects. In the case of more complex
backgrounds, instead, it is worth showing the confusion ma-
trices (Tables 2 and 3). They show how, if the amount of
clutter is small, the recognition rates are still very satisfac-
tory. In the case of very complex and textured backgrounds
the performance drops because of the high number of fea-
tures detected (of which only a small number belong to the

objects | simple | scale | occlusions
bambi 99.50 92.34 100.00
box 100.00 | 100.00 100.00
duck 100.00 | 98.90 100.00
biscuit | 100.00 | 100.00 100.00
book1 100.00 | 100.00 100.00

book2 100.00 | 95.53 77.78
dino 100.00 | 100.00 100.00
teddy 100.00 | 98.86 100.00
pino 100.00 | 99.59 92.96
tele 100.00 | 100.00 100.00
tommy | 100.00 | 100.00 100.00

Table 1. Hit percentages of the 11 classifiers
against test sets (1-4) (see text).



bambi box duck biscuit book1 book2 dino teddy pino tele tommy
bambi 71.46 0.00 13.69 0.00 0.00 0.00 0.00 3.48 2.55 0.23 8.58
box 0.34 98.65 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
duck 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
biscuit 0.00 0.00 0.22 99.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00
book1 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
book2 522 0.00 0.37 0.00 0.00 91.04 0.00 1.49 0.00 1.49 0.37
dino 9.48 0.00 13.73 0.00 0.00 0.00 58.17 0.33 0.00 0.00 18.30
teddy 0.00 0.00 3.13 0.00 0.00 0.00 0.00 96.87 0.00 0.00 0.00
pino 15.66 0.00 15.93 0.00 0.00 0.00 742 1.92 41.48 0.00 17.58
tele 0.93 0.93 6.48 0.00 0.00 0.00 0.00 0.93 0.00 90.28 0.46
tommy 4.86 0.00 2.86 0.00 0.00 0.00 429 0.57 2.29 0.00 85.14

Table 2. Confusion matrix for test set (5), with moderate quantities of clutter on the background.

bambi box duck biscuit book1 book2 dino teddy pino tele tommy
bambi 2.11 0.00 5.15 19.67 2.11 11.01 0.00 11.94 0.00 8.90 39.11
box 0.00 85.81 0.65 0.65 0.00 8.06 0.65 0.00 0.00 0.65 3.55
duck 0.53 0.00 40.74 9.52 1.06 0.53 0.53 423 0.53 423 38.10
biscuit 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
book1 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
book2 0.37 0.00 0.74 0.00 0.37 96.68 0.00 0.37 0.00 0.74 0.74
dino 1.08 0.00 0.65 16.85 33.69 3.46 2.38 11.45 1.08 2.81 26.57
teddy 1.24 0.00 3.96 0.25 1.73 4.70 0.50 36.14 743 14.60 29.46
pino 0.00 0.63 8.15 25.08 13.48 7.52 0.00 4.70 0.63 10.34 29.47
tele 0.00 0.47 0.47 0.00 0.94 12.21 0.00 0.00 0.00 81.22 4.69
tommy 2.07 0.00 0.00 1.38 724 6.55 0.00 33.79 1.72 6.55 40.69

Table 3. Confusion matrix for test set (6), with a very complex background.

object). This suggest that for very complex environments a
local search with a window sliding over the image to mark
the test area should be performed. We started investigat-
ing the case of test images with multiple objects. Figure 3
shows a test image with two objects and the features that
match 3 different object vocabularies. The high scores (in
red) are positioned on the correct object.

5. Discussion

We presented a learning from examples procedure to rep-
resent and recognize 3D objects, based on local representa-
tions. Each object is modeled using an image sequence.
SIFT features are extracted and tracked over the sequence,
and the obtained trains of features are used to build a vo-
cabulary of virtual features. The actual classification is per-
formed with an SVM classifier. The results reported show
how the method behaves nicely in the case of illumination
and scale changes, allow for occlusions, and the presence
of moderate quantities of clutter in the background. To
deal with more complex backgrounds or multiple objects,
a region-based search procedure is currently being imple-
mented. Recently a view-based approach to recognition that
exploits a feature tracking has been proposed [5]. The pos-
sible connections of our approach with this work are under
investigation.
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