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Abstract

Terrestrial laser scanners produce point clouds with a
huge number of points within a very limited surrounding.
In built-up areas, many of the man-made objects are dom-
inated by planar surfaces. We introduce a RANSAC based
preprocessing technique that transforms the irregular point
cloud into a set of locally delimited surface patches in order
to reduce the amount of data and to achieve a higher level
of abstraction. In a second step, the resulting patches are
grouped to large planes while ignoring small and irrelevant
structures. The approach is tested with a dataset of a built-
up area which is described very well needing only a small
number of geometric primitives. The grouping emphasizes
man-made structures and could be used as a preclassifica-
tion.

1. Introduction

In addition to photogrammetric imaging, laser scanning
has become a major data source for the acquisition of 3D
city models for tourist information or the documentation of
cultural heritage. Airborne systems are widely used but also
terrestrial laser scanners are increasingly available. They
provide a much higher geometrical resolution and accuracy
(mm vs. dm) and are able to acquire building facade details
which is a requirement for realistic virtual worlds. How-
ever, the operating area is limited due to obstruction and by
the maximum range of the laser beam. It is not possible to
capture an extended area from one position alone, leading to
typical raw datasets consisting of several overlapping, huge
point clouds. The overall objectives are to

• generalize the point cloud to higher level geometric
primitives and group them to objects for data reduc-
tion and as preparation for high level cognitive tasks.

• fuse the datasets and coregister them into a single geo-
metric reference frame using these primitives.

While automatic matching of multiple point clouds still
is a topic of research [2, 6], different approaches for seg-
mentation and representation through geometric primitives
exist. Segmentation techniques include clustering based on
local surface normal analysis [1, 6], region growing using
scan geometry and point neighborhoods [2], generation of
a discrete grid [8], or a split-and-merge scheme applying an
octree structure [9]. The objects are often represented by
planar elements recovered through RANSAC schemes [1],
creation of a triangular irregular network [4], tensor vot-
ing [8] or least squares adjustment [9]. The tensor voting
scheme is able to describe not only planes, but also linear
structures like high-voltage lines.

In this paper, a preprocessing technique is presented, that
transforms the point cloud into a set of object surfaces via a
two stage process. The first stage is a RANSAC based gen-
eration of locally delimited surface patches from the point
cloud. The second stage groups patches belonging to the
same surface in object space.

2. Generation of surface patch elements

The input is a cloud of 3D measurements gathered by a
terrestrial laser scanner and locally delimited planes shall
be extracted as surface patches. These may represent a part
of larger, planar objects but may as well coincide with small
object surfaces. The transformation is split up into two sub-
processes, a partitioning of the point cloud into spatial bins
and the robust estimation of the dominant plane in each bin.

2.1. Spatial data partitioning

The set of 3D points is partitioned and assigned to
3D volume cells using a Cartesian raster. All points in one
of the raster cells will be denoted by X . Two objectives are
satisfied by this partitioning:

• The raw point cloud is organized into small blocks that
can be processed seperately.

• Since each cell only covers a small part of the complete
scene, it emphasizes local features in object space.



Figure 1. Panoramic image of the test area showing the amount of reflected light as grayvalues.

Since the laser scanning device is set up roughly aligned
to the horizontal plane, there exists an implicit alignment
between cells and the world coordinate system.

We have to deal with a quantization problem: On the one
hand the raster should be chosen as small that any impor-
tant object surface dominates at least one cell. On the other
hand, the cells should not be too small because unwanted
microstructure would dominate the results. For the experi-
ments, a raster of 1 m was chosen in order to describe facade
and roof surfaces while safely ignoring small structures.

2.2. Robust estimation of plane patches

The second stage is the robust estimation of the dominant
plane – the one that has the biggest support from the 3D
points X – independently for each of the raster cells. Only
one plane is computed for each cell which seems counterin-
tuitive, but if the cell size is chosen such that almost every
significant object surface will be the dominant plane in at
least one cell, no information about the object is lost.

Robust estimation implies a result free of outliers – in
our case this involves not only the estimation of the plane
parameters p := (n, d) (Eq. 2), but also of the set of
points X̂ ⊆ X lying on the plane. We have implemented
it using the well known RANSAC strategy [3]: A minimum
set of three non colinear points Xi ⊆ X is chosen randomly
and the uniquely defined plane pi is computed. Then for all
points xj , their distance dji to the plane pi is computed,
defining the set of inliers of run i as

X̂i := {xj ∈ X | dji ≤ dmax, j = 1 . . . |X |} (1)

These steps are repeated, while the largest inlier set X̂ is re-
tained as result. In a final step, the final plane parameters p̂
are estimated from all points in X̂ .

The plane represented by the Hesse normal form

ax + by + cz + d = n>x + d = 0 (2)

has an infinite extent. We are interested in a small and de-
limited plane representing the points X̂ only. Therefore, in
addition to the normal vector n and the distance d to the
origin, the mean o of the point cloud X̂ is stored as well.

For the visualization, all points X̂ are projected orthog-
onally onto p̂ thus forming a 2D point set x̂. The convex
hull of x̂ is determined and its (planar) polygon transformed
back into 3D space as the boundary of the plane element.
Similar to the 3D data partitioning, the 2D points are par-
titioned and assigned to a 2D raster in order to compute a
texture image. Some of the 2D cells may remain empty
because the point cloud is sparse or contains holes. A fill-
ing factor λ is computed and will be used as weight for the
grouping step. Subsequently, such planes are called patch
and denoted by P.

3. Grouping of planes

Each patch instance P has the attributes (n, d,o) as-
signed with it. Regarding coplanarity as a major property
of man-made objects, we group these instances into planar
cluster objects C

C ∈ P(P) ∧ ∀Pi,Pj ∈ C : n>i oj ≈ di, (3)

where P(P) is the power set of P and ≈ means approx-
imately equal. Given such an object instance C we again
assign attributes (n̂, d̂, ô) to it: ô by averaging over {oi},
n̂ as null space of the set {oi − ô} and d̂ = ô>n̂.

The set of all objects {C} is a subset of P(P). We pro-
pose to list only the few most important in a priority ordered
sequence. First criterion for the importance of an object C
is its size |C|. Second criterion is its 2D property captured
by the ratio between the third and the second singular value
s3/s2 acquired during null space determination. As com-
bined criterion we choose

c := − ln(s3/s2) · |C|. (4)



Figure 2. 3D model of the main building.

The search for an approximation of this ordered list of ob-
jects C is fostered by a sensible assessment criterion on the
objects P for which we utilize the filling factor λ (Sec. 2.2).
The list of all patch elements P is prioritized according to λ.
The production of cluster objects is started by picking seed
objects with the highest priority. For each such object Pi

the set of possible partners {Pj} is queried for

||ni − nj || < tn ∧ |n>i oj − dj | < t0. (5)

The maximal set of objects {Pj} fulfilling this aggregating
constraint is used for construction of a new object C.

We emphasize that this procedure does not exactly give
the set of cluster objects defined by Eq. 3: It suppresses
subsets of bigger clusters, and it does not really test for
n>j oi ≈ di. The similarity condition for nj and ni is used
for faster query handling and the simple threshold t0 for ≈
in the coplanarity query is a rough approximation being
aware of work such as [5]. For t0 we used 6 cm here, which
is double of what has been used in Eq. 1. The approach has
a bias listing more dominant and important objects first, so
that the search can be interrupted by any external demand
and then output the set of objects C obtained so far.

There will be many similar objects in the output set, dif-
fering in very few predecessors only, due to straight forward
control structure. This motivates a second ordering proce-
dure operating on the output set of the first. It computes the
criterion ci (Eq. 4) for each object Ci and picks the object
with maximal c first. From this object the attribute vector
(ni, di,oi) is taken to compute a suppressing factor

fij = 1− e−||ni−nj ||2−λ|di−dj |2−γ||oi−oj ||2 . (6)

Figure 3. Remaining major planes from Fig. 2.

Before picking the next element this factor is multiplied to
all the assessments cj resulting in suppression of objects
similar to the first one.

We see close relationship to perceptual grouping dis-
cussed in the computer vision community. [7] Coplanarity
can be viewed as straightforward generalization of colinear-
ity to just one dimension more.

4. Experiments and results

The investigated dataset has been acquired by a terres-
trial laser scanner Z+F Imager 5003. The chosen scene
(Fig. 1) is a courtyard surrounded by several buildings at
various distances. The reflected light from the laser beam is
recorded as a grayvalue and is used for texturing. Because
no light is returned from the open sky, it appears black. This
dataset contains about 100 million 3D points and covers a
spherical area with a radius of 50 m.

The extracted planes are shown for two different view-
points in the scene (Figs. 2/4). Information is missing at
some object plane boundaries because of the restriction of
only one plane per raster cell. Parts of the roof structure
in Fig. 2 are missing due to obstruction through eaves gut-
ter and pergola (cf. Fig. 1). The empty circular area on the
ground gives a good hint for the position of the scanner.
The tree (Fig. 4) has been modeled quite well, even though
the approach demands a description through planes only.
The grouping lead to 24 object surfaces shown in different
colors (Figs. 3/5). Only man-made structures are left over
while the tree and other smaller objects have been success-
fully removed.



Figure 4. Example of a natural object (tree).

Table 1. Data amount at different stages.

#points / 106 #planes #surfaces
Point cloud 104 — —
Small planes 1.7 2616 —
Object surfaces 0.8 1103 24

Tab. 1 shows the data reduction through the stages. The
number of points is reduced to 2% through averaging the
raw points over texture pixels of a size of 3 × 3 cm. The
complete scene is described with only 2616 planar elements
instead of over 100 million points. The grouping step re-
duces the data again to 1% so that only 24 object surfaces
remain. The selection involved with the grouping rejects
about half of the small planes as unimportant.

5. Conclusions and future work

We have shown a robust preprocessing method to extract
planar surfaces from 3D point clouds. The visualization of
this intermediate data shows a good coverage of the scene.
The grouping approach selected man-made structures very
well so that this step can already be regarded as a preclas-
sification. Giving a brief ordered priority list of important
probably man-made surfaces of a scene means an important
step towards automatically understanding the scene.

Future tasks are registration of multiple datasets based
on the extracted planes, solving conflicts and refinement of
the grouping step and a grouping of surfaces to objects.

Figure 5. Remaining major planes from Fig. 4.
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