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Abstract

This is the first part of a tutorial discussing the major
strategies and methodologies by which a test of the Null hy-
pothesis of no Torah effect can be done. The basic concepts
of equidistant letter sequence, skip specification, resonance
specification, and compactness features are discussed here.

1. Introduction

The application of pattern recognition methodologies are
not new to religious areas. For example Ikeuchi’s use of
a 3D laser scanner to obtain range data on religious ob-
jects such as the Great Buddha of Kamakura is one such
project[2]. Ikeuchi was able to process the range data and
create a complex 3D mesh surface model of the Buddha and
then give it the gold leaf appearance as it was when it was
originally built.

In this paper we discuss another kind of application of
pattern recognition and statistical methods to a religious
area. We discuss the Torah codes, a topic that has had
considerable popular interest with three documentary video
productions. Also it has been involved in a great academic
controversy ever since the publication of the first formal
study by Witztum, Rips, and Rosenberg[4] and the subse-
quent claim that any apparently successful experiment re-
sult must be due to a non a priori data selection[3].

The Torah codes center on the Hebrew Torah text, the
five books of Moses. There is some evidence that key words
which are historically/logically related have their equidis-
tant letter sequences in a more compact geometric arrang-
ment in the Torah text than expected by chance. This phe-
nomena, if it is really there, is surprising. Here, we do not
review the various experiments that have been done. Nor
do we discuss the controversy itself. That discussion can
be found in Haralick, Rips, Glazerson[1]. Rather, we lay
out in a tutorial way, the basic concepts and kinds of pattern

features that are being used in the Torah code investigation
and discuss two experiments that have been done with this
methodology.

2. Definitions

A word w of length K is a sequence of K characters
w =< wi,..., Wk >. A text T is the character string
of the text with spaces, punctuation marks and all symbols
other than the letters of the alphabet removed. A text is just
a very long word. Let T' =< t;,...,tz > be a given text.
The letter frequency of alphabet letter « is just the number
of the times the letter o occurs in the text. It is given by

fla) =#{z|t. = a}

The probability of occurrence of letter « is given by

An equidistant letter sequence, called ELS for short, is a
sequence of equally spaced letters in the text not counting
spaces and punctuation marks. The sequence of the letter
positions form an arithmetic progression. Several properties
associated with an ELS e are:

e): the beginning position of ELS e,

(e):
e E(e): the ending position of ELS e,
: the number of characters in ELS e,

B
e L(e)
S(e): the skip of ELS e, and

W (e): the character string < W(e)1,..., W(e)r) >
of ELS e

These properties have two constraints: B(e) < L(e) and
the relation binding the end position to the beginning posi-
tion. E(e) = B(e) + (L(e) — 1)|S(e)|.



The positions determined by the ELS e are given by
B(e), B(e) +1S(e)l,..., B(e) + (L(e) — 1)[S(e)|

Character W (e); of ELS E is associated with position
B(e)+ (i —1)|S(e)|,i =1,..., L(e). The span of an ELS
eisgivenby F(e) — B(e)+1 =14 (L(e)—1)|S(e)|. ELS
e is said to be an ELS of key word w when w = W (e).
The skip S(e) can be positive or negative depending on
whether the ELS positions match in a forwards or back-
wards order. We call the first kind of ELS a positive skip
ELS and the second kind of ELS a negative skip ELS. ELS
e is said to be a positive skip ELS of a word w whose respec-
tive characters are ws,...,wy,, if and only if L,, = L(e)
and w; = Wi(e);, i = 1,...,L,. ELS e is said to be
a negative skip ELS of a word w whose respective charac-
ters are < wy,...,wr, > if and only if L,, = L(e) and
w; = W(E)L(e)-‘rl—ivi = 17 e ,Lw.

An ELS e is said to be an ELS of a word w in a text T' if
and only if it is an ELS of word w and

wi_H,i = 0,...,L(€) —1
when S(e) >0
wr,—i, i =0,...,L(e)—1

when S(e) <0

Tp(e)+ils(e)]

The set of all ELSs £ associated with a word
w =< wi,...,wx > and text T' is given by

Ew,T)={e | Tpe)+ise) = wir1 = W(e)it1,

(
1=0,...,K —1,when S(e) > 0;

)
)
T(e)+ils(e)| = Wk —i = W(e)k s,
i=0,...,K —1,when S(e) <0}

If we want to name the set of ELSs for a key word w in
a text 1" with respect to a general skip specification o, we
will write E(w, T, o).

2.1. Number of Placements

The number of possible placements for an ELS e of skip
S(e) in a text of length Z is Z — (L(e) — 1)|S(e)]. So the
number N of possible placements for ELSs of absolute skip
from smallest skip S, to largest skip Sy, 4z 18

(Smaa: - szn + 1) %
2

(QZ - (L(e) - 1) * (Smax + szn))

N =

If matching is allowed both in the forward direction and
reverse direction, then the number of possible placements
is exactly double the expression above, providing the key
word is not symmetric (spelled the same way forward and
backwards).

3. Number of ELSs

Given a text T' of Z characters, there is a corresponding
text population of Z! texts corresponding to all the Z! letter
permutations of the text 7". In the letter permuted text pop-
ulation, the probability p that any given placement of the
letters of the key word w =< w;,...,wg >, will match
the letters in the placement position is given by

K
p = [Ip(w
k=1

The probability for observing a given number of ELSs
depends on the control text population and the minimum
and maximum skip ELS that is searched for.

In the case of a letter permuted text population, having
placement match probability p for a given key word, the
probability that K ELSs will be found for a key word in a
search of IV placements is given by the binomial probability

N! _
Prob(K [ p,N) = m?K(l -p)N K

3.1. Expected Number of ELSs

Given a key word w, a minimum absolute skip .S,,:n
and a maximum absolute skip S,,4,, We associate with
each text 7’ in the letter permuted population the set
E(w, T, Simin, Smaz). This set is the set of all ELSs of
word w in the text T’ that have absolute skips in the inter-
val [Spin, Smagz)- This set has a size: the number of ELSs
it contains. The arithmetic average of the sizes of the ELS
sets taken over all the texts of the population is defined as
the expected number of ELSs.

In a population of letter permuted texts, each of length
Z, the expected number of ELSs of a key word

w =< wi,...,wg > is given by pN where
K
p = []p(w
k=1
Smar - Smin 1
N = ( + ) * (22 - (L - 1) * (Smam + Smin))

2

3.2 Poisson Probability Approximation

In the case when p is small and N is large, the binomial
probability can be approximated by the Poisson probability

e PN (pN)*

Prob(K |p,N) = 70



since

N
> kProb(k | p,N) = pN
k=1

4. SKkip Specification

One of three criteria may be used to specify the skip ELS
set of a key word: Expected Number of ELSs, Largest Skip,
and Largest Possible Skip. Each criterion has as well a spec-
ified smallest skip S,;,. The most convincing Torah codes
are often found using the expected number of ELS search
criterion. S, is typically set to 1 or 2.

4.1. Expected Number

The expected number criterion sets the largest skip to
be searched for to be the smallest skip S,,,,, making the
expected number of ELSs in a randomly sampled text from
a letter permuted population be just larger than a given NV
when the smallest absolute skip is 2. This is the protocol
followed by WRR. WRR sets N to be 10 for the Genesis
text of 78,064 letters. (Even though the expected number is
computed for a minimum skip of 2, the skip specification is
free to choose Sy, = 1 or Spn = 2). We let o denote
the skip specification and £(w, T, o) the set of all ELSs of
word w in text T satisfying the skip specification o.

4.2. Fixed Maximum Skip

The fixed largest skip criterion, just specifies a given
value for S, 4z

4.3. Largest Possible Skip

The largest possible criterion sets S, as large as pos-
sible while keeping the span of the ELS within the text, here
assumed to have length Z. Hence 5,4, satisfies

Z -1
Smax = |7 7
=
where | | designates the floor function. The largest possible

criterion makes the skip ELS set for a word w be the set of
all ELSs of the word w in the text T'.

5. ELS Row and Column Skip on the Cylinder

When the text, with no spaces and punctuation charac-
ters, is spiraled around a cylinder of  columns, an ELS of

absolute skip s will appear on the cylinder with row skip s,
and column skip s. given by

. ls/v] if smody <~ — smod 7
" [s/7] otherwise

A skip s ELS converts to a column skip s. on a cylinder
of size v where

if smody <~y — smod 7

o — s mod 7y
¢ otherwise

—(y — smod )

We say that the column skip of an ELS on a cylinder is
positive if s mod v < v — s mod ~. This corresponds to the
condition when the closest way to reach successive letters
of the ELS is by proceeding clockwise around the cylinder.
We say that the column skip of an ELS is negative when
s mod v > v — s mod ~. This corresponds to the condition
when the closest way to reach successive letters of the ELS
is by proceeding counterclockwise around the cylinder.

6. Resonance Specification

The Torah code phenomena seems to more heavily in-
volve ELSs and cylinder sizes where the relation is that the
row skip s, and the column skip s. are both sufficiently
small. A skip of size s and a cylinder of size «y are said to
resonate when s, and s, are sufficiently small.

There are five simple criteria that have been used in vari-
ous experiments to make this specification: max skip, area,
diagonal, and perimeter. Let s = s, 4+ s.. Then skip s
resonates with cylinder size v when

® S, < Spmae and S. < Semag for the max skip criterion
® S, xS, < mqe fOr the area criterion

o 24+ 52<d?

max

for the diagonal criterion
e 2(s; + 8¢) < permay for the perimeter criterion
e 5. < Spmaz for the WRR criterion

On the basis of the resonance specification ¢, we may
define the resonance relation Res.

Res(¢) = {(v, s) | skip sis ¢ resonant with cylinder size v}

Depending on the arguments of Res, we overload it in ac-
cordance with the following definitions.

Res(y,¢) = {s
Res(s,¢) = {v

(7,5) € Res(¢)}
(7,5) € Res(¢)}



7. Distance on the Cylinder

Many varieties of compactness definitions involve the
concept of the distance between two positions on the cylin-
der. From one point on a cylinder to another, there are two
distinct paths: proceeding clockwise around the cylinder
and proceeding counterclockwise around the cylinder. The
distance between two positions is defined as the shorter of
these two.

Let p; and py be two text positions on a cylinder of size
~ columns. Let r denote the row distance between the two
positions and let ¢ denote the column distance between the
two positions. Then

L1 — p2l/7] if |p1 — p2|lmody <
"= 7 = Ip1 — p2|mody
[Ip1 — p2l/7] otherwise
¢ = min{|p1 — p2|mody,y — [p1 — p2[mody}

The Euclidean distance A between positions p; and ps on a
cylinder of size -y is then defined by

V2 +c?

A(p1,p2;7) =
8. Pairwise Distance Based ELS Compactness

An ELS on a cylinder of size v can be regarded as a set
of points. From this perspective view, the simplest com-
pactness between two ELSs amounts to defining a distance
like function between two sets of points. There are two
commonly used definitions between the points of two sets:
their minimum distance d; and their maximum distance d5.
Let e; and ey be two ELSs with respective beginning posi-
tions B(e1) and B(ez), skips S(e1) and S(ez), and length
L(ey) and L(eq). Then we define three distances between
the ELSs on a cylinder of « columns by the min distance
d1, the max distance ds, and the sum of the min and max
distance by di5.

di(er,ez;y) = min CA(B(er) + (i = 1)[S(e1)],

i=1,...,L(e1)
j=1,...,L(eg)

Blez) + (j — 1)[S(e2)];v)
dlenesn) = _max_ A(Bler)+ (i— DIS(en)]
J=1.....L(eg)
B(e2) + (j — 1)|S(e2)};v)
dia(e1,e2;7) = di(er,ez;y) +da(er, e2;y)

WRR used a squared min distance modified by the
squared skips as it appears on the cylinder. An ELS skip
of s appears on the cylinder of size ~ as a skip with dis-
tance A(0, s;y). Based on this idea, we can define three
WRR-like ELS distances.

wi(er,e2,7) = di(er,e2;7) +
A%(0,S(e1);7) + A%(0,S(e2);7)
wy(er,ea,y) = di(er,e;y) +
A%(0,5(e1); ) + A%(0,5(e2);7)

d12(€17€27’)’ +
A*(0,5(e1);v) +

w12(6176277) =

(07 5(62); ’Y)

In the above definitions, the three terms are weighted
equally. But if the natural weights are different because in
some sense the scale of the skip distance is not the same as
the scale of the closest distance, it would be better to take
a product. To keep the product from being zero in the case
of the min distance, we bound the min distance below by a
small positive constant e.

pi(er,e2,y) = (maz{di(er,ez;7),€)}) X
(A%(0,S(e1);7) + A%(0, S(e2); 7))
p2(e1,e2,v) = d§(€17€2;7) X

(A%(0,5(e1);7) + A%(0, S(e2);7))
diy(er, e2;7) x
(A2(0,5(e1);7) + A%(0, S(e2); 7))

P12(€1,€2,’7) =

8.1. ELS Set Distance Based Compactness
Measures

The ELS pairwise distance based measures can be easily
generalized to ELS set based measures. Every pair of dis-
tinct ELSs in a given set has a compactness. One of the pairs
has a largest compactness. If we are given a set of ELSs un-
der the hypothesis that all are compactly related, this largest
compactness is a reasonable measure of compactness for the
set.

Let E be a set of ELSs. Using capital letters for the set
based distance, we can define the corresponding set based
compactness measures for a given cylinder size 7.

Di(E;7) maxd (e, f;7)

fEE

max ds (e, f;7)

fEE

Dip(E;y) = maxdis(e, f;7)
sem

W(E;y) = maxwi(e, f;7)
fEE

Q2(B;y) = maxws(e, f7)

feE

Dy(E;vy) =

M2(E5y) = maxwiz(e, f;7)

feEE



Ri(E;y) = maxp(e, f;7)
feE
Ry(Esv) = maxps(e, f;7)

fEE

Ri2(E;7)

max p1z(e, f37)
fEE

9. Table Based Compactness Measures
9.1. Table Definition

A table T on a cylinder of size 7 is a quadruple T' =
(b,n,-,ne,7y), where b is the beginning position of the table,
n, is the number of rows of the table, and n. is the number
of columns of the table and ~y is the cylinder size. The table
specified by T is the set of positions P(T) = {p | p =
b+ry+e¢, 0<r<n,0<c<n.} AtableT issaid to
contain the characters of an ELS e if

B(e) +1S(e)| xl € P(T),0 <1 < L(e)
9.2. Table Formation

For any pair of ELSs (ey, e2), and cylinder size ~, there
is a table T'(eq, e2,y), whose positions contain all the po-
sitions of ELSs e;. Likewise, for any set F' of ELSs and
cylinder size v, there is a table T'(F,~y) whose positions
contain all the positions of the ELSs in F' and which has
the smallest number of rows and columns. We call T'(F, )
a table formed from ELS set I and cylinder size +y.

9.3. Table Compactness

The compactess C(T) of table T = (v, n,, n.) can be
specified by one of four possible criteria: max side, area,
diagonal, or perimeter.

max{n,,n.} for the max criterion

Other combination methods over resonant cylinder sizes in-
clude taking harmonic mean yi;, and geometric mean fi4.

Vharm(C;6,0) = pa{d((,7) 17 € m Res(S(e),¢)}

ec(

wgeom(c; 67 ¢) = /Lg{CS(CvV) HAS ﬂ Res(s(e)v (rb)}

ec(

11 Collections of ELS Sets Defined From The
Key Word Set

Let W = {wy,...,wk} be a set of K key words de-
scribing an event. Let skip specification o be given. Asso-
ciated with each key word w of W is a set £(w, T, o) of its
ELSs in text 7" in accordance with skip specification o. Let
Z(W;T,o) be the collection of all ELS sets, where each
set in the collection contains exactly one ELS from each of
the ELS sets E(w,T,0), w € W,

ZW;T,0) ={{e1,...,ex} | er € E(wg, T,0)}
To evaluate whether the key words of W are encoded as
compactly arranged ELSs in text 7', the statistic we use must
be a function defined on Z(W;T, o) and involving a com-
pactness measure defined over resonant cylinder sizes.

12. Key Word Set Compactness

Let § be one of the ELS set based compactness measures,
1) be one of the combination methods defined over resonant
cylinder sizes, ¢ be a resonance specification, and o be a
skip specification. We define ¥ to be key word set com-
pactness measure that combines compactnesses over reso-
nant cylinder sizes with respect to the skips of the ELSs and
over ELSs of the key word set. Combination methods over
ELS sets include taking the minimum, the harmonic mean,
1, and the geometric mean, pg.

o(T) = TNy * N for the area criterion
T ) n2+n? for the diagional criterion Upin(Wih,0,0,0) = min{y((;8,¢) : ¢ € Z(W;T,0)}
2(n, +mn.)  for the perimeter criterion Uharm(With,8,0,0) = un{v(C;6,6):C € Z(W;T,0)}

\Ijgeom(W; 1/)7 67 ¢a U)

pg{(¢;0,¢) - € Z(W;T,0)}

10. Combination Methods Over Resonant
Cylinder Sizes

Let ¢ be an ELS set, § be one of the ELS set compactness
measures and ¢ be a resonance specification. We define the
best compactness 1,,,;,, over resonant cylinder sizes by

Ymin(C;0,0) = min{d((,y):v € ﬂ Res(S(e), ¢)}

ec(

13. Key Word Sets

Any description of an event must have one or more key
word sets. For the statistics to be meaningful, the key word
sets must be specified a priori, before any kind of exper-
iment is done and without peeking at the data. The key



word sets must be correct,! in some sense complete, and
use Hebrew spelling that is determined by rule rather than
by personal preference.’

14. Monkey Text Population

In order to evaluate whether an effect is occurring in the
Torah text different from what would happen by chance in
an ordinary text, it is required that a population of ordinary
texts be defined. We call such a population of ordinary texts
Monkey Texts to emphasize that in the Monkey Text popula-
tion, the Null hypothesis of No Torah Code Effect is appli-
cable. For the Torah text to be special with regard to Torah
codes, it must mean that the strength of the effect is signifi-
cantly higher (the ELSs of logically/historically related key
words are in a more compact arrangement) in the Torah text
than in the texts of the Monkey text population. The way to
determine significantly higher is to compare. For any given
key word set, there is a compactness value v; that is com-
puted for the Torah text. Then N — 1 texts from the Monkey
text population can be randomly sampled. Associated with
the randomly sampled text n is a compactness value v,, for
the same key word set. The significance s of the effect in
the Torah text is measured by computing the number of the
N total texts having smaller compactness value plus one
half the number of the total texts having equal compactness
value, normalized by N the total number of texts examined.

. #{nlv, <vi}+ 5#{n|v, =0}
a N

Here s is the normalized rank of the Torah text’s compact-
ness value.

There are a variety of different kinds of Monkey text
populations that can be defined that in some significant way
bear some statistical similarity to the Torah text. Each is
created by taking the Torah text or its ELSs and performing
some kind of randomly shuffling, making whatever com-
pactness relationships that occur in these texts due to pure
chance.

Random Shuffling techniques include letter shuffling,
word shuffling, verse shuffling, and chapter shuffling. Letter
and word shuffling can be done within verse, within chap-
ter, within book, or globally. Verse shuffling can be done
within chapter, within book, or globally. Chapter shuffling
can be done within book or globally. In the Constant Word
Shuffle, the letters of each of the distinct words of the text
is randomly shuffled. Each time a word appears in the text
the same letter shuffling of that word appears in the shuf-
fled text. All these shuffling techniques guarantee that the

'TIs has been documented from the Aumann committee experiment
where experts were employed that many dozens of errors were made. Er-
rors of course invalidate an experiment.

2Hebrew has alternative ways of spelling due to the degree to which
additional letters are used in the spelling to designate vowels.

letter frequency of the text is preserved in all the monkey
texts. However, the ELS statistics will change. To keep the
ELS statistics the same we favor the ELS random placement
monkey text population discussed next.

ELS Random Placement Text Population

The ELS random placement text population is always
with respect to a given text and its set £ of ELSs of the
given set of key words and resonance specification. It does
not consist of a text as a long string of letters. Rather, each
text of the population is represented as a set of ELSs where
each ELS keeps the same skip, length, and characters as it
had in the original ELS set £. However the beginning (and
therefore the ending) positions of each ELS are randomly
translated. Each translation that keeps the span of the ELS
entirely within the text length has the same probability of
occurring. This translation happens independently for each
ELS. So if there were N ELSs and ELS n had X,, possible
translations, then the number of texts in the ELS random
placement text population would in effect be

N
[ x.
n=1

If £(u,T;0) is the set of ELSs of word u from text T’
according to skip specification o, we write £(u,T; 0, )
to designate an ELS random placement perturbation of
E(u, T; o) according to perturbation 7.

15. Summary

We have discussed some of the basic concept involved
in testing the Torah code hypothesis. In part two of this
paper we will illustrate the application of these concepts in
experiments and discuss the results.
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