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Abstract

Image registration is the process of geometrically align-
ing two or more images. In this paper we describe a method
for registering pairs of images based on thin-plate spline
mappings. The proposed algorithm minimizes the differ-
ence in gray-level intensity over bijective deformations. By
using quadratic sufficient constraints for bijectivity and a
least squares formulation this optimization problem can be
addressed using quadratic programming and a modified
Gauss-Newton method. This approach also results in a very
computationally efficient algorithm. Example results from
the algorithm on three different types of images are also
presented.

1 Introduction.

This paper addresses the problem of image registration.
It is the process of geometrically aligning two or more im-
ages and has been the subject of extensive research over the
last decade, see [1]. This field is widely applied in computer
vision, remote sensing and medical imaging.

The approach presented here is based on the thin-plate
spline mapping, a commonly used method for deforming
images. Using this mapping we wish to find dense and bi-
jective correspondences between pairs of images. In com-
puter vision, non-linear mappings in R

2 of this sort are fre-
quently used to model deformations in images. The under-
lying assumption is that all the images contain similar struc-
tures and therefore there should exist mappings between
pairs of images that are both one-to-one and onto, i.e. bijec-
tive.

The contribution of this paper is in addition to highlight-
ing of some interesting properties of the thin-plate spline
mapping also the incorporation of sufficient quadratic con-
ditions for bijectivity into that framework. A description of
how to combine this into a simple but efficient algorithm
based on a least-square minimization formulation is also
provided. Similar methods have been proposed [9], how-
ever without addressing the issue of bijectivity.

2 Thin-Plate Spline mappings.

Thin-plate splines are a class of widely used non-rigid
spline interpolating functions. It is a natural choice of in-
terpolating function in two dimensions and has been a com-
monly used tool in computer vision for years. Introduced
and developed by Duchon [2] and Meinguet [3] and popu-
larized by Bookstein [4], its attractions include an elegant
mathematical formulation along with a very natural and in-
tuitive physical interpretation.

Consider a thin metal plate extending to infinity in all
directions. At a finite number of discrete positions ti ∈ R

2

the plate is at fixed heights zi. The metal plate will take the
form that minimizes its bending energy. In two dimensions
the bending energy of a plate described by a function g(x, y)
is proportional to
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Consequently, the metal plate will be described by the
function that minimizes eq. 1 under the point constraints
g(ti) = zi, where ti ∈ R

2. It was proven by Duchon [2]
that if such a function exists it is unique.

By combining two thin-plate interpolants, each describ-
ing the x- and y-displacements respectively, a new function,
the thin-plate spline mapping φ : R

2 → R
2 can be con-

structed. Given a set T of k control points in R
2 and a set

Y of k destination points also in R
2. It has been shown by

Kent and Mardia [5] that such a bivariate function φ that
fulfills φT,Y(ti) = yi, i = 1..k is in the form (for details
see [4])

φT,Y(x) = (φ1(x), φ2(x))T = c + Ax +
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where

σ(h) = ||h||2 log(||h||), (3)
s(x) = [σ(|x − t1|)...σ(|x − tk|)] (4)
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Combining eq. 2 and 6, and with the following partition of
Γ−1,

Γ−1 =

[
Γ11 Γ12

Γ21 Γ22

]

,

the transformation can be written as

φT,Y(x) =
[

s(x)T 1 x1 x2

]
[

Γ11

Γ21

]

Y (8)

This gives us a deformation φT,Y that for a fixed set of
control points T is parameterized linearly by the destination
points Y.

3 Thin-Plate Spline Based Image Registra-
tion.

The registration of two images requires finding the defor-
mation of the first image that makes it as similar as possible
to the second image. Here, the non-linear deformation used
is the thin-plate spline mapping and the similarity function
is the simply the sum of squared differences in gray-level
intensity.

Denote the image to be warped I(x, y), the reference im-
age Iref (x, y) and the thin-plate spline mapping by
φT(x,Y). (Remark: We have slightly changed the no-
tation for the thin-plate spline mapping to emphasize that
we now see φ as a function of the destination configura-
tion Y as well. These are the variables the similarity mea-
sure later will be optimized over). Introducing the finite set
X = {x1,x2, ...,xN} of points where the two images are
to be compared, typically all the pixel positions of the ref-
erence image, the similarity function can then be written

f(Y) =
N∑

i=1

(ri(Y))2 =
N∑

i=1

(I(φT(xi,Y)) − Iref )2. (9)

Minimizing such sum of squares is a frequently occurring
problem and a number of methods exist that take advantage
of its particular structure.

The Gauss-Newton method addresses the problem in a
very simple but appealing manner. This iterative algo-
rithm converges linearly towards the minima if the starting

point is sufficiently close. With the Jacobian of r(Y) =
[r1(Y)...rN (Y)] defined as the N ×2n matrix (J(Y))ij =
( ∂ri

∂Yj
), the gradient and Hessian of eq. 9 can be written

∇f(Y) = 2J(Y)T ri(Y) (10)

H(Y) = J(Y)T J(Y) + 2
N∑

i=1

ri(Y)∇2ri(Y) (11)

In order to avoid having to compute the Hessian
∇2ri(Y) in every iteration the second part of eq. 11 is as-
sumed small and is simply neglected.

H(Y) ≈ H̃(Y) = J(Y)T J(Y) (12)

Now by approximating f(Y) by its second-order Taylor ex-
pansion of degree near Ykwe get

f(Y) ≈ f(Yk) + ∇f(Yk)T (Y − Yk) +

1

2
(Y − Yk)T H̃(Yk)(Y − Yk) = f̃(Y) (13)

The unconstrained minimization of this quadratic approxi-
mation of the objective function f̃(Y) is carried out by the
normal equation

Yk+1 = Yk − (J(Yk)J(Yk)T )J(Yk)ri(Yk) (14)

By applying this method iteratively Yk will then converge
to a local minima of f(Y).

However, since we want to minimize 9 over bijective
mappings only, a slight alteration of this method is required.
From [6] we can obtain convex quadratic sufficient con-
straints on Y for bijectivity of the mapping φ(Y) on the
form

Y
T AY + bT

Y + c ≥ 0

As the minimization of eq. 13 is now no longer uncon-
strained the final step of the original Gauss-Newton method
is replaced by the quadratically constrained quadratic pro-
gram, also convex if H(Yk) is positive definite

min f̃(Yk) = f(Yk) + ∇f(Yk)T (Y − Yk) +

+ 1
2 (Y − Yk)T H(Yk)(Y − Yk)

s.t. Y
T AY + bT

Y + c ≥ 0

The solution Y
∗ of this optimization is taken as the next

point in the iteration
At each iteration of the modified Gauss-Newton method

requires the computation of r(Y) = [r1(Y)...rN (Y)]T and
J(Y). This can be done very efficiently. Using eq. 8 the



mapping of all points in X can be written
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︸ ︷︷ ︸

HT,X

Y =

= HT,XY (15)

Since the N × 2n matrix HT,X is not dependent of Y it
can be precomputed, reducing the computation of the map-
ping of X by φ(Yk) to a single matrix multiplication. This
then allows for an efficient calculation of the deformed im-
age. The jacobian of ri is also needed.

(J(Y))ij =
∂ri
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=
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∂
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(16)

I ′x and I ′y are the horizontal and vertical components of the
gradient of I . Furthermore since the mapping φT(x,Y) is
linear in Y its partial derivatives are all constant

φT(X,Y) = [φ1(X,Y) φ2(X,Y)] = HT,X [Y1 Y2] =

= [HT,XY1 HT,XY2] ⇒

⇒ ∂
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and similarly
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So eq. 16 can be computed through componentwise mul-
tiplications of elements from I ′

x(φ(xi,Y)), I ′y(φ(xi,Y))
and HT,X Combining all of the above then enables us to
write the proposed algorithm as

Algorithm for thin-plate spline based image registra-
tion.

1. Pre-computation.
For a given thin-plate spline source configuration T

and a pair of images I and Iref to be compared at a
finite number of positions X = {x1, ...,xN} compute
the following:

• The gradient of image I ,
∇I = ( ∂

∂x
I, ∂

∂y
I) = [I ′

x, I ′y].

• The matrix HT,X from eq. 15

• The quadratic bijectivity constraints on Y for T,
according to [6]

2. Initialization.
Choose an starting point Y0 for the algorithm. Either
by employing some coarse search method or by simply
selecting Y0 = T, the unit deformation.
Set k = 0.

3. Iteration start.

• Compute φk
T

(X,Yk) = HT,XYk.

• Find I(φk
T

(X,Yk)), I(φk
T

(X,Yk)) and
I(φk

T
(X,Yk)).

• Calculate the residual ri = I(φk
T

(X,Yk)) −
Iref .

• Use eq. 16 to determine the Jacobian J(Yk).

• Compute the gradient and the approximated Hes-
sian of f(Y) of eq. 9

∇f(Yk) = 2J(Yk)T ri(Yk)

H(Yk) = J(Yk)T J(Yk)

4. Optimization.
Find the solution Y

∗ to the quadratically constrained
quadratic program

min f̃(Y)

s.t. Y
T AY + bT

Y + c ≥ 0

(remark: if bijectivity is not desired then Y
∗ = Yk+1

of eq. 14.)

5. Parameter update.
Set Yk+1 = Y

∗ and k = k + 1.

6. Return to 3.

4 Experimental Results.

We applied the suggested registration algorithm on three
different types of images. First, a pair of simple, artificially



constructed images. Second, two magnetic resonance im-
ages of a human brain, the types of images in medical imag-
ing where image registration techniques are commonly ap-
plied. Finally, we attempted the registration of a pair of
images of human faces. In this case the initial assumption
of dense one-to-one mappings does not necessarily hold as
self-occlusion can easily occur for these types of images.
However, bijective registrations of natural objects like faces
is still of great interest, for instance in the automatic con-
struction of the Active Appearance Models of [8].

For these experiments a source configuration T as a reg-
ular rectangular 10 × 10 grid was used. The quadratic con-
straint was pre-computed and used in all three instances.
The images used were roughly 100× 100 pixels in size. On
a standard personal computer the entire registration proce-
dure, including all pre-computations except for the bijectiv-
ity constraints, took approximately 60 seconds. The results
can be seen in figs 1, 2 and 3.

Image I . Image Iref .

Resulting deformation φT. Resulting registration I(φT).

Figure 1. Registration of a pair of simple arti-
ficial images.

In these three experiments our algorithm converges to at
least a satisfactory registration of the image pairs. The ar-
tificial images are overlayed very accurately, as would be
expected. The images of the faces are also successfully reg-
istered, differences are slight but distinguishable. We be-
lieve that this is the result of fundamental dissimilarities
between the images, such as inconsistent lighting. How-
ever, in the case of the two magnetic resonance images of
a human brain the registration process is not entirely suc-
cessful. Some of the discernable features does not seem
to have been correctly overlayed. We assume that this is
caused by shortcomings inherent in our algorithm. Firstly,
and this was briefly mentioned earlier, some of the assump-
tions the Gauss-Newton method, on which our approach is
based, makes requires that the initial starting point of the
algorithm is sufficiently close to the global optima. What
constitutes sufficiently close is debateable but is a required
for the method to converge successfully. Secondly, a 10×10
grid thin-plate spline mapping can only parametrize a sub-
set of all bijective deformations of R

2 and in addition, since
the bijectivity conditions of [6] are sufficient but not nec-
essary, we can only reach a subset of this set. This means
that our method is perhaps better suited for image registra-
tions requiring smaller deformations. Nevertheless, we do
believe that the results presented here the still indicates the
applicability of such an algorithm.

5 Concluding Remarks.

In this paper we have presented a method for perform-
ing pairwise registration of images. An algorithm, based
on the thin-plate spline mapping, for efficiently finding the
necessary deformation is proposed. Experiments on three
different types of images with promising results were also
presented.

Improvements are still achievable. In order to overcome
the drawback of the Gauss-Newton method an initial stage
to the algorithm should be added. One that performs a
larger-scale optimization, for instance over affine deforma-
tions only, providing a better starting point for the thin-plate
spline mapping optimization. The number and distribution
of the control points should also be investigated. More
points parametrizes a larger subset of the bijective defor-
mations. Obviously, improving the bijectivity constraints
could also enhance the performance of the algorithm, but
that is perhaps outside the scope of the work carried out in
this paper. A different objective function than eq. 9 might
also improve on our method. Finally, a more efficient rep-
resentation of the matrix HT,X should be examined, as its
size grows quadratically with the size of the image, even for
moderately large images the matrix can become unmanage-
able.
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Image I . Image iref .

Resulting deformation φT Resulting registration I(φT).

Figure 2. Registration of a pair of brain MR
images.

Image I . Image Iref .

Resulting deformation φT. Resulting registration I(φT).

Figure 3. Registration of a pair of images of
faces.


