Camera-Based Document Image Mosaicing

Abstract

In this paper we present an image mosaicing method for
camera-captured document images. Our method is unique
in not restricting the camera position, thus allowing greater
flexibility than scanner-based or fixed-camera-based ap-
proaches. To accommodate for the perspective distortions
introduced by varying poses, we implement a two-step im-
age registration process that relies on accurately comput-
ing the projectivity between any two document images with
an overlapping area as small as 10%. In the overlapping
area, we apply a sharpness based selection process to ob-
tain seamless blending across the border and within. Exper-
iments show that our approach can produce a very sharp,
high resolution and accurate full page mosaic from small
image patches of a document.

1. Introduction

Digital image mosaicing has been studied for several
decades, starting from the mosaicing of aerial and satellite
pictures, and now expanding into the consumer market for
panoramic picture generation. Its success depends on two
key components: image registration and image blending.
The first aims at finding the geometric relationship between
the to-be-mosaiced images, while the latter is concerned
with creating a seamless composition.

Many researchers have developed techniques for the spe-
cial case of document image mosaicing [2, 5, 6, 8, 9, 10].
The basic idea is to create a full view of a document page,
often too large to capture during a single scan or in a sin-
gle frame, by stitching together many small patches. If the
small images are obtained through flatbed scanners [2, 8],
image registration is somewhat easier because the overlap-
ping part of two images differ only by a 2D Euclidean trans-
formation. However, if the images are captured by cameras,
the overlapping images differ by a projective transforma-
tion. Virtually all reported work that we are aware of on
document mosaicing using cameras impose some restric-
tions on the camera position to avoid perspective distor-
tion. Some of them simply ask the user to point the camera
straight at the document plane [5, 9]. Others require hard-
ware support. Nakao et al [6] attach a video camera to a
mouse, facing down at the document page. While a user
drags the mouse across the page, a sequence of pictures

are taken, and registered pairwise with the help of mouse
movement. In [10] a overhead camera is fixed facing down
while the document is moved on the desktop. While hard-
ware support reduces projective transformations to Euclid-
ean transformations, it defeats one purpose of using cam-
eras, which is to achieve flexibility and convenience.

Our goal is to get back flexibility and convenience, so
that users can take pictures from any position. Fig. 1 shows
some example images that we are able to process. While
there have been hundreds of papers written on image reg-
istration ([7, 3], to name a few), the images in Fig. 1(a,b)
are still very difficult to register because the displacement
is large, the overlapping areas are small (around 10%),
the perspective distortion is significant, and the periodic-
ity of printed text presents similar texture patterns every-
where. The Fourier-Mellin registration method [7] did not
work well on them. We have also tried robust estimators
(RANSAC and SoftAssign [1]) with a feature points detec-
tor (PCA-SIFT [3]), which failed because the periodicity of
text leads to large number of outliers (up to 90%) in feature
point matches.

Fig. 1 also reveals three other problems in image blend-
ing that have not been well addressed. First, the light-
ing is inconsistent between two images, which is common
for consumer grade cameras with inaccurate auto-exposure
feature and on-camera flash. Conventional blending com-
putes the weighted average in an overlapped area, i.e., f =
a1 f1+ as fa, where f1 and f, are pixel values from two im-
ages, a; and as are two weights that sum up to 1. By vary-
ing the weights one can achieve a gradual transition from
one image to another across the overlapping area. There
are other more sophisticated methods, but while they may
work for natural scenes, they are not optimized for docu-
ment images. Fig. 1 (c) shows the result of a simple blend-
ing method. Although other sophisticated methods may do
better inside the overlapping area, the point is that it only
affects the overlapped area; the overall lighting variation is
still not satisfactory.

Second, there could be errors in registration. If so,
weighted averaging would result in double or ‘ghost’ im-
ages. Third, two images have different sharpness, either be-
cause of different resolution due to camera zooming, or be-
cause of out-of-focus blur in either image (see Fig. 1(d,e)).
Weighted averaging is only adding blurring in one image to
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Figure 1. Challenges for camera-based document image
moscaicing. (a,b) Camera captured images. (c) Result of
perspective rectification, image registration, and conven-
tional weighted average blending. (d) Rectified small por-
tion of (a). (e) Rectified small portion of (b). (f) Weighted
averaging result of (d) and (e) extracted from (c). (g) Our
selective image blending result.

sharpness in the other. For natural scene photos, when reg-
istration error is small, visual appearance will generally be
acceptable. However, for document images, any small off-
set and blurring is noticeable and affects visual recognition
of black markings on white paper.

Our proposed registration method for two overlapping
views consists of two steps. First we remove perspective
distortion and relative rotation of individual views using
text lines and vertical character strokes detected in docu-
ment images. This step removes perspective foreshorten-
ing and rotation, and leaves only a translation and a scal-
ing between the two views. Then, we find feature point
matches between views using PCA-SIFT. Although outliers
still dominate, we are able to filter them out efficiently. Af-
ter refining the transformation with cross-correlation block
matching results, we can obtain a very accurate registration
for the image pair.

We treat the inconsistency of lighting by localized his-
togram normalization, which balances the brightness and
contrast across two images as well as within each. Then
in the overlapped area, we perform a component level se-
lective image composition which preserves the sharpness of
the printed markings, and ensures a smooth transition near
the overlapping area border.

2. Document Image Registration

The first step of our image registration method is to re-
move perspective foreshortening and rotation between two
images of the document, and leave only a three-parameter

transformation combining a translation and a scaling be-
tween the two images. We achieve this by removing the
perspective distortion in both images. The basic idea is to
detect text line directions and vertical character stroke di-
rections, find their vanishing points, and the homography
that maps the vanishing points back to infinity (see [4]).

Ideally, the two resulting perspective-free images now
should only differ by a translation and a scaling. Al-
though projectivity is gone, large displacement, small over-
lap, and periodicity of texture still prevent common regis-
tration methods from succeeding. For example, the Fourier-
Mellin method still fails, and PCA-SIFT still gives a lot of
false matches that defeat SoftAssign and make RANSAC
impractical. However, we propose a novel way of filtering
out the PCA-SIFT outliers at this point, taking advantage of
the fact that the transformation between the two images now
depends only of two translation parameters and one scaling
parameter.

Let’s first assume that we know the scale. Suppose that
two images are placed within the same coordinate system
after proper scaling, and the true translation of image 2 with
respect to image 1 is (7g,y0). Let {p;}}¥, be the feature
points in image 1, and {¢;}}¥, be the matched points in
image 2. If p; and ¢; are a correct match pair, we should
have ¢; — p; = (0, yo), and inequality otherwise. Since we
do not know (g, yo), nor the correct matches, this equation
itself does not lead to anything. However, if we compute
all the displacements between matched points, i.e., let ¢; —
pi = (4,y;), we will have (2}, y;) = (zk, yx) (We say that
they are compatible), where j and k denote any two correct
matches. In the meantime, the probability of (xs,ys) =
(¢, y:) where either s or ¢ denotes an incorrect match is
extremely low assuming that g, or ¢, is randomly distributed
across the image. Therefore, the true translation is the one
supported by the largest group of compatible match pairs.
After that, it is straightforward to find the correct matches.

If the page is not at the same scale in the two images,
the compatibility between correct matches will degrade and
so will the support for the true translation vector. When the
scale is totally wrong, the distribution of the correct matches
will be as random as the incorrect ones, so that the size of
the largest group of compatible matches will diminish to
one or two matches.

Therefore, we can search for the best scale and transla-
tion by looking for the largest group of compatible matches.
For a given scale, we compute a 2D histogram of the dis-
placement vectors, and each matched pair contributes one
vote in one of the bins. The optimal bin size should be
proportional to the average position error of the correctly
matched feature points. In practice, we find that this is not
very critical. We use 1/20 of the image diagonal length.
Fig. 2 shows the sizes of the first and second largest groups
of compatible matches found in 2D histograms for different



scales. The results are based on images in Fig. 1. The high-
est peak in the solid curve identifies the correct scale. The
largest group size remained at 2 when scale is totally wrong
because PCA-SIFT repeated a pair of matched points in its
output. At the correct scale, the second largest group (only
3 counts) is much smaller than the largest group (12 counts).
This shows that the aggregation of correct matches is good,
which in turn means robustness against noise. The figure
also shows that when the scale is a little bit off to the right,
some matches in the largest group get moved to the second
largest group at the neighboring bin, which confirms our
statement that the compatibility among correct matches de-
grades. As a side benefit, the ratio between the two curves
may serve as a reliability index for the identified scale.
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Figure 2. 2D histogram peak values vs. scales

Once the scale is known, we use the corresponding 2D
histogram to find the correct matches aggregated in the
largest group. Using this group we compute an initial pro-
jective transformation between the two images, and map
one into the other, as shown in Fig. 3(a). Because good
matches tend to reside near the center part of the over-
lapped region, the transformation is inaccurate around the
border area. We further refine the transformation using
cross-correlation block matching. This results in a dense
and accurate matched point set covering the whole over-
lapped area, which is used to compute the projective trans-
formation (see Fig. 3(b)).

3. Seamless Composition

As we have stated in the introduction, there are three dif-
ficulties in creating a seamless document mosaic. The first
is due to inconsistent lighting across two images. Conven-
tional blending does not address overall lighting inconsis-
tency, and it works well for general photos only because
people accept lighting changes in natural scenes. However,
documents are fundamentally binary with black print on
white paper, and viewers’ eyes are very sensitive to vary-
ing shade in documents. Typically, the histogram of a docu-
ment image is bimodal. Different lighting conditions cause
the two modes to shift. One way of balancing the light-
ing across two document images is to binarize both im-
ages. However, binarization introduces artifacts. Instead,
we choose localized histogram normalization. The basic
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Figure 3. Image registration results. (a) Registration by
correct PCA-SIFT matches shows misalignment. Squares
and crosses indicate the matched points. (c) Registration by
block matching results is very accurate.

idea is to compute the local histogram in a small neigh-
borhood, normalize the histogram such that the two modes
are transformed to black and white respectively (or very
dark and light gray). Histogram normalization preserves
the transition between background and foreground, so the
result is more pleasing to view.

The second problem is registration error and the third is
different sharpness of patch images. Our solution to both
of them is selective image blending, i.e., for each pixel, we
choose the value from the image with better sharpness. We
measure sharpness at a pixel by the local average of the gra-
dient magnitude. For each pixel in the overlapped region, if
it is ‘sharper’ in the first image, we say the pixel decision
is ‘1’, or ‘2’ otherwise. If we apply pixel level decision di-
rectly, it may cut words or even characters into pieces. In
practice we find that it is more desirable to keep each word
whole. Therefore we aggregate the pixel decisions at the
component level. More specifically, we compose an averag-
ing image for the overlapped area, then binarize it and find
its connected components. We dilate each component to
cover a larger area. This ensures that areas that may contain
‘ghost’ images are merged into their nearest components.
The dilation is made larger in the horizontal direction such
that each word is more likely to become a single component.
All the pixels inside a component vote with their pixel level
decision, and the majority vote is taken as the component
decision. If the decision is ‘1°, every pixel in the compo-
nent is copied from image 1; otherwise, they are all taken
from image 2. As a result, most whole words are taken from
the image that has the sharpest version of that word. For the
background pixels, there is no danger of ‘ghost’, so we use
the pixel level decisions directly.

Fig. 4 illustrates the process of selective image blending
and the results. In Fig. 4(a), most components are single
words. In Fig. 4(b) the two arrows indicate how the com-
ponent level decision avoids cutting words. A large area of



light gray is embedded in the dark gray in Fig. 4(b), which is
fine since that is in the white background area, so any deci-
sion will do. The comparison between (c) and (d), as well as
between (e) and (f) shows that sharpness is preserved. Also
note that boundaries between mosaiced images are elimi-
nated.
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Figure 4. Selective image blending. (a) Connected com-
ponent map where letters are dilated and connected. The
overlapped region is in light gray, background in dark gray,
and components in white. (b) The binary selection decision
map distinguished by dark and light gray. (c,e) Weighted
averaging result. (d,f) Selective image blending result.

4. Summary

We have implemented a framework for mosaicing
camera-captured document images to reconstruct a full page
image. Our two-step image registration method can align
document images with as little as 10% overlap and severe
perspective distortion. We also propose an image blending
method that is optimized for document images, which ad-
dresses the inconsistent lighting, ‘ghost’ image, and varying
sharpness problems.

We have applied our algorithm in full A4 page docu-
ment mosaicing experiments. One of the results is shown
in Fig. 5. The number of patches in our tests varies from
four to eight. Due to limited space we cannot show other
results here. In all cases, the registration is accurate, and
the selective blending creates smooth and seamless results.

In future work we will test our algorithms with curved
document images. We would anticipate some local mis-
alignment beyond projective transformation, which we can
rectify by local warping.

the vanishing point. However, this requires that text paragraphs are fully justified, and |
that the page is flat. In [REF] they propose another method which also works on flat page, |
only requiring one justified margin (or center lines of centered paragraphs), by exploring
the fact that text line spacing is constant in 3D world, but varying in 2D image due to

(which is a ruling by our definition) using perspective projection profile analysis, and

relate the position of the vanishing point to each pair of sequential distances between the
intersections. The relation is regulated by two parameters, and they found the optimal
parameters through a search in a two-dimensional space. Once the two parameters are

found, the vanishing point position is found

Our method originates from the same idea as [REF] but has three key improvements
First lines in our data are curved, so neither orthogonal or perspective projection
uitable. Instead, we propose to use curve-based projection profile in which the
lines become curves that follow the major texture flow at every point. Second,
the text line spacing is constant only within a paragraph, while the inter-paragraph spacing
could be differ we derive a criterion to group text lines into paragraphs before we
apply the constant spacing property. Third, we simplify the vanishing point estimation
to a closed form formula which basically solves a one-parameter linear system. This is
much faster than searching in a two-parameter space.

In the curve-based projection profile analysis, the estimated 2D ruling line is the base |
line. The length of projection lines is fixed. After the profile is built, it will has peaks |
corresponding to text lines and valleys for white space. We first find the principal ‘wave |
| length’ w in the profile by detecting the strongest frequency response in its FFT result. We

denoise the profile by smoothing it with a kernel of size w. After that we apply adaptive
| thresholding (with window of size w, too) to get a binary profile where ‘1’ represents text
hout loss of generality, assume that the rising edges give

1 line and ‘0’ for white space,
the text line ‘top’ positions and the fallimg edges are the ‘bottom’ positions. Suppose we
set up a one dimensional coordinate system on the 2D ruling, and denote the position of
text line ‘top’ and ‘bottom’ positions by {ps}™, and {p}L,, respectively, where T'is the

| number of text lines. Also suppose a di system is on the 3D ruling, |
t00, and the corresponding positions are {Px}7, and {Pu}LL,. In the following we will
use ({ps}Zy, {P},) to exemplify our method , and drop the ¢ subscript for the sake of |

| simplicity.

Our assumption is that A; = P,y — P, is constant within a paragraph. Under perspec-
tive projection, &; = pi1 — p; will not, in general, be constant. However, because of the
invariant cross-ratio property [REF], it is easy to derive the following:

[Piss = PillPiss = pisal _ |Pisa = PllPiws = Pl _ 1
[pis2 = BillPiss = pial  |Pis2 = PllPus = Pl — 4

Thus, for any four sequential text line positions, if the above equality is observed (by a |
threshold), we claim that they come from the same paragraph; otherwise, not. Next is the
pseudo-code for paragraph segmentation, where the input is the list of text line positions |
{p:}Z,, and the output is the set of paragraphs P:

1. Initialization: set paragraph list P = ®; set the current paragraph P, = ®; set the
current position index j = 1

Figure 5. Full A4 page mosaic result.
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