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Abstract

It is possible to broadly characterize two approaches to
probabilistic modeling in terms of generative and discrim-
inative methods. Provided with sufficient training data the
discriminative approach is expected to yield superior accu-
racy as compared to the analogous generative model since
no modeling power is expended on the marginal distribu-
tion of the features. Conversely, if the model is accurate the
generative approach can perform better with less data. In
general it is less vulnerable to overfitting and allows one to
more easily specify meaningful priors on the model param-
eters. We investigate multi-conditional learning – a method
combining the merits of both approaches. Through specify-
ing a joint distribution over classes and features we derive
a family of models with analogous parameters. Parame-
ter estimates are found by optimizing an objective function
consisting of a weighted combination of conditional log-
likelihoods. Systematic experiments in the context of fore-
ground/background pixel classification with the Microsoft-
Berkeley segmentation database using mixtures of factor
analyzers illustrate tradeoffs between classifier complexity,
the amount of training data and generalization accuracy.
We show experimentally that this approach can lead to mod-
els with better generalization performance than purely gen-
erative or discriminative approaches.

1 Introduction

There are a wide and growing variety of tasks in Com-
puter Vision for which Machine Learning methods based
on probability are being successfully applied. For classifi-
cation tasks it is particularly common to make the distinc-
tion between the generative approach and the discrimina-
tive approach to probabilistic modeling. In contrast, in the
approach we present here neither a purely generative nor
a completely discriminative approach is used. Rather, first

a joint model with latent variables is constructed which is
then optimized with respect to multiple conditional likeli-
hoods. We call this approach multi-conditional learning. In
other work, multi-conditional learning was introduced [6]
in the context of random field models for documents.

Here, we apply multi-conditional learning to a mixture
of factor analyzers (MFA) model [3] which is a powerful
latent variable model that allows one to perform simultane-
ous dimensionality reduction and clustering. As opposed
to [6] where an undirected graphical model is constructed
we obtain the joint model in a generative fashion here. The
multi-conditional MFA is then applied to the color image
segmentation problem described in [1]. The latter work
has compared generative and discriminative methods for pa-
rameter estimation within an underlying (spatially coupled)
Gaussian Mixture Markov Random Field model.

Recently, attention has been given to comparisons be-
tween discriminative and generative methods for modeling
in the context of object recognition problems [10]. In [5]
the Conditional Expectation Maximization CEM algorithm
is proposed for parameter estimation in generative mod-
els with hidden variables based on optimizing the marginal
conditional likelihood of classes. This work also illustrates
the distinction between the optimization of a generative
model under standard joint likelihood and for a particular
conditional likelihood obtained from the underlying joint
model. The work of [5] can thus be characterized as a type
of discriminative learning in generative models.

Many classical statistical models can be viewed from
these generative and discriminative perspectives. For ex-
ample, while the name is misleading, classical linear dis-
criminant analysis (LDA) arises from the posterior proba-
bility of a generative model consisting of a class prior P (c)
and class-conditional Gaussian distributions P (x | c) with
common covariance matrix. The parameters of the gener-
ative model are determined from the traditional maximum
(joint) likelihood estimate. In contrast, a model with the
same parametric form also arises in linear logistic regres-
sion which represents a discriminative P (c |x) model di-
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rectly. However, the parameters of the logistic regression
model are determined by optimizing the conditional likeli-
hood and without constructing an explicit model of P (x).
In [8] classifiers with these relationships are characterized
as Generative-Discriminative pairs.

2 Multi-Conditional Learning

In classification problems one is interested in predicting
a class c given observed features x. From decision the-
ory it is known that the most complete characterization of
the solution is given by the conditional class probabilities
P(c |x, θ). All models considered in the following share the
same parametric form for the conditional class probabilities
and only differ in the way the parameters θ are estimated.

The generative approach attempts to capture the man-
ner in which observed features x are generated from given
classes c by specifying a prior distribution over classes and
a class-conditional distribution over the features. It there-
fore defines the joint distribution P(x, c) = P(x | c) P(c).
The posterior is obtained from Bayes‘ formula as

P(c |x, κ, λ) =
P(x | c, κ) P(c |λ)∑
c P(x | c, κ) P(c |λ)

(1)

with the two parameter vectors κ and λ. For parameter esti-
mation the maximum likelihood principle leads to the (neg-
ative) joint loglikelihood (JL)

Lc,x(θ;D) =
N∑

i=1

log P(ci, xi | θ), (2)

where D denotes an iid training data set and θ = (κ, λ).
The discriminative approach on the other hand, directly

captures P(c |x, θ) but does not demand a model for the fea-
tures x. In fact, any distribution P(x | ν) could be assumed
thus defining the joint distribution as

P(x, c | θ, ν) = P(c |x, θ) P(x | ν) (3)

Since only P(c |x, θ) is needed for classification the param-
eters ν do not have to be determined [7]. The resulting log-
likelihood is therefore the conditional loglikelihood (CL)

Lc|x(θ;D) =
N∑

i=1

log P(ci |xi, θ) (4)

Parameter estimation by maximizing Lc|x w.r.t. θ is com-
monly referred to as discriminative training.

Instead of modeling P(c |x, θ) directly the posterior de-
rived in a generative way (1) can also be used for discrim-
inative training (4). Given the same number of parameters
θ discriminative training is expected to yield a more pow-
erful model since the conditional class distribution P(c |x)

is usually simpler than the joint distribution over c and x.
However, this model is also more susceptible to overfitting,
in particular if only little training data is available. To pre-
vent overfitting prior knowledge has to be used. As prior
knowledge usually results in biased estimates it is impor-
tant to define correct priors. This is often easier for genera-
tive models when the model parameters are associated with
some meaning and prior knowledge about these parameters
is indeed available.

In this paper we propose and examine the use of multi-
conditional models which are derived from a joint distribu-
tion by using the multi-conditional loglikelihood (MCL)

Lα
c|x,x|c(θ;D) =

N∑
i=1

[
log P(ci |xi, θ)

+ α log P(xi | ci, θ)
]

(5)

MCL is defined with a temperature parameter α. For
α = 0 MCL just turns into CL whereas for α = 1 a
pseudo-likelihood is obtained. It is well-known that pseudo-
likelihood is asymptotically consistent, i.e. in the infinite
data limit it yields the same parameter estimates as JL. By
choosing α between 0 and 1 one can smoothly vary between
JL and CL criteria and thus one defines a whole family
of models (as opposed to model “pairs” [8]). MCL com-
bines advantages from both generative and discriminative
approaches since

• the second term in Eqn. (5) defines a consistent regu-
larizer for the parameters θ since it is derived from a
joint distribution.

• in our work here the model is constructed in a gen-
erative way allowing one to incorporate correct prior
knowledge such as certain invariances or prior distri-
butions over parameters.

• for small α MCL concentrates on the discriminative
part of the distribution to improve classification results
over joint likelihood training.

Finally, all objectives are easily calculated given the joint
loglikelihood Lc,x and the two marginal loglikelihoods Lx

and Lc, as

Lc|x = Lc,x − Lx (6)

Lα
c|x,x|c = (1 + α)Lc,x − Lx − αLc. (7)

3 MFA Models for Pixel Classification

In [1] a segmentation database was constructed1 for
which 30 color images were combined with 20 images from

1http://www.research.microsoft.com/vision/cambridge/segmentation/
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(a) lasso labeling (b) ground truth

Figure 1. A users lasso labeling of the
boundary of a banana and the corresponding
ground truth fore- and background labeling.

the Berkeley segmentation database2 An example from the
database is shown in Figure 1. The users’ labels are speci-
fied by a tri-map obtained with a lasso or pen tool as shown
in Figure 1(a). Given background (dark gray) and fore-
ground (white) pixels the task is to classify every pixel in the
inference region (light gray) as fore- or background pixel.
For each image ground truth labels are available (c.f . Fig-
ure 1(b)) and are used to determine the classification test
accuracies in the inference region.

For every color pixel a 9-dimensional feature vector is
constructed by concatenating three color values (CIE Lab)
and six texture values. The latter are obtained from the three
times two eigenvalues of the structure tensor [4] in each of
the Lab planes.

Multiple colors and textures can appear in the fore- and
background regions. Therefore, a mixture model is re-
quired to describe the feature distribution [1]. Furthermore,
since the 9-dimensional feature vector certainly carries re-
dundant information dimensionality reduction should be ap-
plied. Both can be achieved simultaneously with a mix-
ture of factor analyzers (MFA) model [3], a latent variable
model. Hence, the MFA model served as a basis for the
derived family of models in the following.

The generative model for pixel classification is depicted
in Figure 2 and defined by the following distributions

P(c |π) = exp[πT c] (8)

P(s | c,Ω) = exp[cT Ω s] (9)

P(x | s, μs,Λs,Ψ) = Nd(μs,ΛsΛT
s + Ψ) (10)

where s and c are multinomial variables, π a vector and Ω
a table of log-probabilities. Ω is constrained such that an
equal number K of subclasses s are associated with each
of the C classes. The normalization constraints on π and
Ω have been enforced by a suitable parameterization (soft-
max). Nd(μs,Σs) is a d-dimensional Gaussian with con-
strained covariance matrix Σs. Each subclass has its own

2http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

mean μs and a d × p factor loading matrix Λs (p � d).
The additive diagonal covariance matrix Ψ is common to all
subclasses. Contrasting [3] we do not introduce additional
Gaussian latent variables z. The dimensionality reduction is
expressed in the non-square loading matrices Λs and mani-
fests itself as the factorized covariance matrix in Eqn. (10).

From the joint distribution defined by Eqns. (8)-(10),
models based on JL, CL and MCL have been derived. Due
to its good convergence properties an expectation-gradient
algorithm [9] has been used to find parameter estimates.
Therefore, expressions for the loglikelihoods Lc, Lx and
Lc,x and their gradients have been derived:

Lc =
N∑

i=1

log P(ci) (11)

Lx =
N∑

i=1

log

[∑
c

P(c)
∑

s

P(s | c) P(xi | s)
]

(12)

Lc,x =
N∑

i=1

log
∑

s

P(s) P(ci, xi | s)

=
N∑

i=1

[ 〈log P(ci, xi, s)〉 + H(s | ci, xi)
]

(13)

with the conditional expectation 〈·〉 ≡ EP(s | ci,xi)[·] and the
entropy H(·).

The gradients for the marginal loglikelihoods (11)-(13)
are easily determined given the gradient of the multinomial
loglikelihood function g(π) = log exp(πT c)

∂

∂π
g = c (14)

and the gradient of the Gaussian loglikelihood function
f(μs,Λs,Ψ) = logNd(μs,Σs = ΛsΛT

s + Ψ)

∂

∂μs
f = Σ−1

s (x − μs) (15)

∂

∂Λs
f = Σ−1

s (S − Σs)Σ−1
s Λs (16)

∂

∂Ψ
f =

1
2

diag
(
Σ−1

s (S − Σs)Σ−1
s

)
(17)

with S = (x−μs)(x−μs)T . The parametric constraints on
π and Ω are easily incorporated by multiplying the gradient
with the Jacobian of the softmax function.

Hence, the three likelihood objectives JL, CL and MCL
can be minimized using any suitable gradient-based opti-
mization routine.

4 Results

A mixture of factor analyzers was fit to random subsets
of the lasso encoded foreground and background pixels with
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Figure 2. Graphical model of the generative
MFA model used for pixel classification.

N between 500 and 5000 examples. A mixture of K ∈
{2, 3, 5, 10} factor analyzers was used for each class and
each factor analyzer had p = 3 latent dimensions.

For the optimization a BFGS quasi-Newton method was
used. The same initial values, obtained with k-means, have
been used for all likelihood criteria to obtain comparable
results. Among five repetitions the run with the best likeli-
hood criterion has been chosen and evaluated on the train-
ing data and on test data, the pixels in the inference region
(c.f . the light gray border in Figure 1(a)).

The average test accuracies over the 50 images with K =
5 are shown in Figure 3(a). Despite considerable variance
general tendencies are clearly visible. Whenever possible,
statistical significance has been assessed with a Wilcoxon
signed rank test. Training accuracies for the same models
are shown in Figure 3(b).

Figure 4 shows the average test accuracies for different
numbers of subcomponents used for the mixture of factor
analyzers. Since each component is modeled by a factor
analyzer the number of parameters increases correspond-
ingly and so do the resulting model complexities. Results
comparing K ∈ {2, 3, 5, 10} are provided.

5 Discussion

As mentioned before the representational power of a
probabilistic model with a certain number of parameters dif-
fers significantly between joint likelihood and conditional
likelihood models. Multi-conditional models seek a trade-
off between these two extremes. A thorough analysis of the
benefits of multi-conditional training must therefore con-
sider the triple tradeoff between model complexity, amount
of training data and test accuracy, fundamentally inherent to
all supervised machine learning problems [2].

Along this line Figure 3(a) shows the test accuracy over
the model complexity (as varied by α) for different sizes of
the training data set. Comparing the spread of the test ac-
curacies of CL and JL for different training sample sizes
confirms the increased susceptibility to overfitting of the
conditional model, in particular when contrasted with the

corresponding training accuracies (c.f . Figure 3(b)). While
for large training samples (N = 5000) the conditional
model outperforms the test accuracy of the joint model
(p = .0088) its test performance degrades more for smaller
samples although training accuracies raise.

Increasing α in the multi-conditional model results in
performance close to the performance of the joint model
but not equal (Figure 3). For α = 1 (pseudo-likelihood) the
MCL model is in general better than JL (p < .0001) which
might be surprising since pseudo-likelihood is known as a
tractable approximation to JL which often exhibits inferior
generalization performance. In the context of MCL how-
ever a “meaningful” pseudo-likelihood is constructed by
partitioning the random variables in the two groups “class
labels” c and “features” x and not with the primary goal of
obtaining tractability.

Decreasing α on the other hand results in performance
more similar to the conditional model (Figure 3). The best
performance, however, is obtained for some α between 0
and 1. Figure 3(a) suggest that a small α around .01 con-
stantly yields good results in the pixel classification prob-
lem. With N = 5000, for instance, the performance of the
MCL model with α = .01 is significantly better than the JL
model (p < .0001) and has a tendency for being better than
the CL model (p = .0411).

Figure 4 shows that across a variety of different base
models the MCL approach can improve the performance
consistently. In fact, for all mixture of factor analyzers with
different numbers of subcomponents an α between .001 and
.01 seems to be optimal. This also suggests that the choice
of α within this interval is less critical than one could fear.

6 Conclusion

We have presented multi-conditional learning for simul-
taneous clustering, dimensionality reduction and classifi-
cation. Starting with a mixture of factor analyzers we
have shown that multi-conditional learning combines fa-
vorable properties of both the corresponding generative
and discriminative models. In the context of the fore-
ground/background pixel classification problem [1] we have
demonstrated that a generalization performance superior to
both can be achieved. Considering the random field ap-
proach in [1] and the positive results in [6] using random
field models of documents we believe that multi-conditional
methods derived from random field models for visual prob-
lems are a promising avenue of exploration.
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(a) Average test accuracies.
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(b) Average training accuracies.

Figure 3. MFA models trained with vari-
ous amounts (N) of the training data and
w.r.t. joint (JL), conditional (CL) and multi-
conditional (MCL, with different values of α)
likelihood. Best test performance is obtained
for MCL with α around .01. As opposed to
the test accuracies the training accuracies
do not decrease toward CL clearly indicating
overfitting.
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Figure 4. Average test accuracies for mod-
els with different numbers of subcomponents
K. The JL performance benefits most from
increasing model complexities. In all cases
maximum performance is obtained with MCL
for small α (between .001 and .01).
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