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Abstract

This article describes a multiple feature data fusion ap-

plied to an auxiliary particle filter for markerless tracking

of 3D two-arm gestures by using a single camera mounted

on a mobile robot. The human limbs are modelled by a

set of linked degenerated quadrics which are truncated by

pairs of planes also modelled as degenerated quadrics. The

method relies on the projection of both the model’s silhou-

ette and local features located on the model surface, to val-

idate the particles (associated configurations) which gener-

ate the best model-to-image fittings. Our cost metric com-

bines robustly two imaging cues i.e. model contours and

colour or texture based patches located on the model sur-

face, subject to 3D joint limits and also non self-intersection

constraints. The results show the robustness and versatility

of our data fusion based approach.

1. Introduction

The development of personal robots is a motivating chal-

lenge in Robotics research. In this context, we have de-

signed and implemented a mobile robot able to interact with

its users. Gestures are especially valuable in crowded en-

vironments where speech recognition may be garbled or

drowned out. They are natural and rich means that humans

employ to communicate with each other. Mobile robot ap-

plications have to observe some high demanding require-

ments. First, on-board processing power is limited and care

must be taken to design efficient algorithms. Second, the

system must run at a speed which is comfortable for the

human user. Third, as the robot may evolve in cluttered en-

vironments subjected to illumination changes, several hy-

potheses must be handled at each instant concerning the

system parameters to be estimated, a robust integration of

multiple visual cues is required to cope with the variations

in both the environment and target appearance. We have im-

plemented a markerless and monocular appearance-based

gesture tracker that fulfills these requirements.

In the Vision community, many researchers have worked

on markerless tracking systems [6] and on the problem of

estimating the human pose from static images [4]. When

just one camera is used, volumetric limbs’ models [9, 2,

10, 4] are usually used to solve the ill-posed problem of

estimating the 3D pose. The type of data used in matching

between the models and the images varies from case to case,

being edges [11, 2, 10], silhouette [2, 10], and motion [10],

are the most used sources of information.

The computational weight is one of the limitations of

most body trackers. Our two-arms gestures tracker is ap-

plied in a quasi real-time process. The method to handle

model projection (see [5] for details), although being in-

spired from [11], is less time consuming. We focus, in this

paper, on a new observation model that combines edges and

motion cues, with local colour and texture patches on cloth-

ing or on the hands acting as natural markers.

Particle filtering is well-suited to our context as it makes

no restrictive assumptions on the probability distributions

and enables the easy fusion of diverse kinds of measure-

ments.

Section 2 describes the likelihood function to be used on

this Bayesian tracking. Tracking implementation and ex-

periments on two-arm gestures are presented in sections 3

and 4. Section 5 summarizes our contribution and opens the

discussion for future extensions.

2. Multiple cues fusion

Being this work based on the use of a particle filter as

the base for the tracking mechanism, we explain in this sec-

tion the construction of the measure functions to be used in

the filter’s weighting step. Knowing that each particle cor-

responds to an hypothesis of configuration for the 3D struc-

ture, the measurement step is responsible to evaluate how

good is each of them.

Combining several cues may confer robustness w.r.t.

temporary failures in some of the measurement processes,

and enables the tracker to take advantage of the distinct fea-

tures obtained from different information sources.

Given M measurement sources (z1
k, . . . , zM

k ), the

global measurement function can be factorized as



p(z1
k, . . . , zM

k |x) ∝
∏M

m=1 p(zm
k |x) This mixed weighting

function is going to smooth some of the false peaks that

may appear on each individual measure, and sharpens other

ones. The result is that the tracker will be more robust as

it will not be trapped by false peaks. The next subsections

depict the measurements that are integrated in the particle

weighting steps followed by some details regarding the im-

plementation.

2.1. Image edges

A weighting factor can be computed for each particle

after projecting the model contours and comparing them

to the edges extracted from the image. The corresponding

log-likelihood is classically computed using the sum of the

squared distances between model points, uniformly placed

on the model edges, and the nearest image edges [3]. In this

implementation, the edge image is converted into a Distance

Transform image, noted IDT , which is used to peek the dis-

tance values. This has the advantage of both producing a

smoother measure function and reducing the involved com-

putations, when compared with the edge searching meth-

ods.

The edge-based likelihood given by p(zS
k |x) ∝

exp
(

−λs
D2

2σ2
s

)

, D =
∑Np

j=0 IDT (j) where j indexes the

Np model points uniformly distributed along each visible

model projected segments, IDT (j) the associated value in

the DT image, and λs a weighting factor. Figure 1.(a) plots

this function for an example where the target is a 2D ellipti-

cal template corresponding coarsely to the head of the right

subject in the input image. As it can be seen on this plot,

for a cluttered background, the use of only shape cues for

the model-to-image fitting is not sufficiently discriminant,

as multiple peaks may appear.

2.2. Motion cues

In our context, the human limbs are expected to be mov-

ing, even if intermittently, in front of a background which

is assumed to be static. Note that this assumption remains

only valid if the camera is static during the process or un-

dergoing a pure rotation where the background motion field

can be estimated. To cope with cluttered scenes and reject

false background attractors, we favour the moving edges, if

they exist, as they are expected to correspond to the moving

target. When the target is stopped, the static edges are not

completely rejected, but only made less attractive than the

moving ones. This is accomplished by using two DT im-

ages, noted IDT and I
′

DT , where the new one is obtained

by filtering out the static edges, based on the local the op-

tical flow vector ~f(z). The new distance D is given by

D =
∑Np

j=0 min
(

IDT (j), K.I
′

DT (j)
)

where K is a con-

stant. Figure 1.(b) plots this more discriminant likelihood

function for the example seen above. The target is still the

right subject, who is assumed to be moving. The results

show that the tracking is less disturbed by the background

clutter, especially while the target is moving.

2.3. Local colour distributions

Clothes, normally, increase diversity of the patterns and

of the colour sets that are found on one’s body surface. They

introduce contrasts between the colours of extremities, e.g.

head, hands and feet, and the clothes that cover the trunk

and arms. So, considering clothing patches of character-

istic colour distributions, i.e. natural markers, seems very

promising.

We denote the B-bin reference normalized histogram

model in channel c ∈ {R, G, B} by hc
ref =

(hc
1,ref , . . . , hc

Nbi,ref ). The colour distribution hc
x =

(hc
1,x, . . . , hc

Nbi,x
) of a region Bx corresponding to any state

x is computed as hc
j,x = cH

∑

u∈Bx

δj(b
c
u), j = 1, . . . , Nbi,

where bc
u ∈ {1, . . . , Nbi} denotes the histogram bin index

associated with the intensity at pixel u in channel c of the

colour image, δa terms the Kronecker delta function at a,

and cH is a normalisation factor. The colour likelihood

model must be defined so as to favour candidate colour

histograms hc
x close to the reference histogram hc

ref . The

likelihood p(zC
k |x) is based on the Bhattacharyya coeffi-

cient [7] between the two histograms hc
x and hc

ref .

Considering several patches of distinct colours on

the tracked limbs surface, the histogram-based modelling

will capture them. We consider the partition Bx =
NR
⋃

p=1
Bp,x associated with the set of reference histograms

{hc
p,ref : c ∈ {R, G, B}, p = 1, . . . , NR}. By

assuming conditional independence of the colour mea-

surements, the multi-region colour likelihood becomes:

p(zC |x) ∝ exp(−
∑

c

NR
∑

p=1

λp,c
D2(hc

p,x,hc
p,ref )

2σ2
c

) where the

histogram hp,x is collected in the region Bp,x and λp,c the

weighting factors. Figure 1.(c) plots this likelihood for the

example seen above, where the target is a colour ROI corre-

sponding to the head of the right subject.Being these mea-

sures quite discriminant in terms of colour/texture distribu-

tions, its use has shown to give very good results if discrim-

inant colour spots on the body surface are tracked.

2.4. Stabilisation and collision detection

Despite the visual cues depicted above, ambiguities arise

when certain model parameters cannot be inferred from the

current image observations. For instance, when one arm is

horizontal and the edge-base likelihood is used, rotation of

the upper arm around its axial axis is unobservable, because



(a) (b) (c)

Figure 1. Likelihhoods regarding: (a) shape cue, (b) combined shape and motion, and (c) colour cue

the model projected contours remain static under this DOF.

Instead of leaving these parameters unconstrained, and like

in [10], we control these parameters with a stabiliser cost

function that reaches its minimum on a predefined resting

configuration xdef . This enables the saving of computing

efforts that would explore unobservable regions of the con-

figuration space. In the absence of strong observations, the

parameters are constrained to lie near their default values

whereas strong observations unstick them from these de-

fault configurations. This can be expressed as a likelihood

function for a state x as: pst(x) ∝ exp(−λst||xdef − x||2)
This prior only depends on the structure parameters and the

factor λst will be chosen in a way that the stabilising effect

will be negligible for the whole configuration space with

the exception of the regions where the other cost terms are

constant.

Another point is that, as the estimation is based on a

search on the configuration space, it would be desirable to

a priori remove those regions that correspond to collisions

between parts. Unfortunately it is in general not possible to

define these forbidden regions in closed form so they could

be rejected immediately during the sample phase. The re-

sult is that in the particle filter framework, it is possible

that configurations proposed by some particles correspond

to such impossible configurations, thus exploring regions

in the configuration space that are of no interest. To avoid

these situations, we use a binary cost function, that is not

related to observations but only based on a collision detec-

tion mechanism. The corresponding likelihood function for

a state x is pcoll(x) ∝ exp(−λcofco) with: fco(x) = {0, 1}
whether it corresponds to a collision or not.

3. Implementation

In its actual form, the system tracks eight degrees of free-

dom, i.e. four per arm. We assume therefore that the torso

is coarsely fronto-parallel with respect to the camera while

the position of the shoulders are deduced from the position

of the face given by a dedicated tracker [1]. The patches

are distributed on the surface model and their possible oc-

clusions are managed during the tracking process. Our ap-

proach is different from the traditional marker-based ones

because we do not use artificial but only natural colour or

texture-based markers e.g. the two hands and ROIs on the

clothes.

Regarding the particle filtering framework, we opt for

the Auxiliary Particle Filter scheme introduced by Pitt and

Shephard [8]. This allows to use some low cost measure or

a priori knowledge to guide the particle placement, there-

fore concentrating them on the regions of interest of the

state space. The associated measurement strategy is as fol-

lows: (1) particles are firstly located in good places of the

configuration space according to rough correspondences be-

tween model patches and image features, and (2), on a sec-

ond stage, particles’ weights are fine-tuned using additional

information from edges, motion, and colour patches.

4. Experiments and results

The above described approach has been implemented

and evaluated over monocular images sequences acquired

in various situations. Figures 2 and 3 show snapshots from

two different sequences. The right sub-figures show the

model projections superimposed to the original images for

the mean state E[xi
k] at frame k, while the left ones show

its corresponding estimated configuration. The following

examples combine measures that use the contours, three

patches per arm, and the geometric constraints.

Due to the efficiency of the importance density and the

relatively low dimensionality of the state-space, tracking re-

sults are achieved with a reasonably small number of parti-

cles i.e. Ns = 400 particles. In our unoptimised implemen-

tation, a PentiumIV-3GHz requires about 1s per frame to

process the two arm tracking, most of the time being spent

in observation function. To compare, classic systems take a

few seconds per frame to process a single arm tracking.



Figure 2. Tracking of pointing gestures

Figure 3. Tracking in the presence of clutter

5. Conclusion

We have presented a general Bayesian framework for

multi-cue human limbs tracking using a single camera

mounted on a mobile robot. After a first contribution, that

was presented elsewhere [5] and, that deals with the method

proposed to handle 3D model image projection and hidden

removal efficiently, we propose a new model-image match-

ing cost metric combining robustly visual cues and geomet-

ric constraints.

In our robotic context, no assumption about clothing ap-

pearance and environmental conditions can be made. Such

variability is accounted by fusing in the global cost func-

tion and varying the degrees of confidence of the image

cues. The estimation process is performed using the aux-

iliary particle filtering algorithm where the associated im-

portance density is known to be the optimal strategy as it

reduces at best the effects of degeneracy [8]. The integra-

tion of the measurement information in the sampling step

enables to concentrate the filtering efforts where they really

matter and so permits to reduce the number of particles.

Our experiments show, that the proposed framework is

suitable for tracking 3D gestures and that the integration of

multiple cues improve the tracker versatility. Our approach

requires less computing power than most of existing ones,

making possible its use in a quasi-real-time application.
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