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Abstract

Distance functions are an important component in many
learning applications. However, the correct function is con-
text dependent, therefore it is advantageous to learn a dis-
tance function using available training data. Many exist-
ing distance functions is the requirement for data to ex-
ist in a space of constant dimensionality and not possible
to be directly used on symbolic data. To address these
problems, this paper introduces an alternative learnable
distance function, based on multi-kernel distance bases or
“wormholes that connects spaces belonging to similar ex-
amples that were originally far away close together. This
work only assumes the availability of a set data in the form
of relative comparisons, avoiding the need for having la-
belled or quantitative information. To learn the distance
function, two algorithms were proposed: 1) Building a set of
basic wormhole bases using a Boosting-inspired algorithm.
2) Merging different distance bases together for better gen-
eralisation. The learning algorithms were then shown to
successfully extract suitable distance functions in various
clustering problems, ranging from synthetic 2D data to sym-
bolic representations of unlabelled images.

1 Introduction

Distance functions are an important component in many
learning applications. Clustering or classification algo-
rithms typically rely on some form of distance function that
has been apriori defined within an input space. Addition-
ally, it is often the case that the correct function is context
dependent, in fact, it is often not possible to choose a spe-
cific distance function. It would therefore be advantageous
to learn a distance function using available training data.

Many approaches to learning distance functions take the
form of a weighted Euclidean function. A popular approach
is the Mahalanobis function[5]. The exact approach to
learning the parameters of the transformation matrix for the
Mahalanobis distance varies according to author[5, 1]. The

Mahalanobis function can cause problems in cases where
a discontinuous input-space is present(e.g. XOR problem).
Another limitation of these distance functions is that they
require the data to exist in a space of constant dimension-
ality. Therefore, it is not possible to use such methods on
symbolic data that often have varying size.

To address the above problems, this paper introduces an
alternative learnable distance function, based upon a com-
bination of multi-kernel distance bases. Each distance ba-
sis essentially introduces “wormholes that connects areas
that may be far away together. This effectively allows us to
bring spaces belonging to similar examples that were orig-
inally far away close together. The use of kernels is also
important as it allows us to remove the requirement for fix
dimensional vector-based data.

This work only assumes the availability of a set of rel-
ative comparisons as in [4], where given three variables,
A, B and C, A is closer to B than C. This avoids the
need for having labelled or quantitative information. To
learn the distance function, two algorithms are proposed.
The first algorithm builds a set of basic distance bases.
To improve the generalisation capability of the final dis-
tance function, a second algorithm is proposed to merge
different distance bases together. We will show how the
learning algorithms were then successfully used to extract
suitable distance functions in various clustering problems,
ranging from synthetic 2D data to symbolic representations
of sparsely labelled images.

The next section will introduce the learnable wormhole-
based distance function. Following this, we explain the
learning algorithm for the distance functions in Section 3.
We describe how this method is applied to the clustering of
unlabelled images and show some experimental results in
Section 4 before concluding in Section 5.

2 Learnt Distances using Wormholes

In this section, we will introduce a learnable distance
function. At its heart is a collection of kernel functions,
K(x, c), where c is the centre of the kernel, taken from a
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Figure 1. Illustration of the wormhole dis-
tance, as compared to normal Eucledian dis-
tance. Introducing a wormhole basis with
kernels a and b has shortened the distance
between x1 and x2 considerably

training example and x is some new input example. Such
a kernel function provides some form of a primitive simi-
larity measure between x and c. For example, in the case
of a space of fix dimensionality, one possible kernel is the
Euclidean distance, such that, given a new input vector x,
the kernel then takes the form of:

K(x, c) =
√
|(x − c)2| (1)

For illustration purposes, the Euclidean distance kernel will
be assumed for the rest of this section and the next section.
However, we will see later the use of other types of ker-
nels for more learning distance functions for solving more
complicated problems.

Key to the learnt distance function is to warp the space to
overcome the inadequacies of a single kernel. Thus, in or-
der to pull two or more far away areas close together, these
kernels are grouped together into a distance basis. Our final
distance function will contain a number (NB) of separate
wormhole bases. Each distance-basis is associated with a
set of kernels: Cj = {cji}bj

i=1, where bj is the number of
kernels and cji is the ith kernel center for the jth basis re-
spectively. The set of kernels in a distance-basis can now be
used to provide a measure of “nearest-distance” as follows:

B(x, y, Cj) = min(K(x, cji))+min(K(y, cji)), i = 1...bj

(2)
We can also think of each distance basis as a zero-distance
wormhole with multiple entrances, where each entrance is
the kernel centre. Thus, from 2, all the kernel centres as-
sociated with the same basis is zero distance to each other
(see Fig. 1. For this reason, from this point on, B(x, y, Cj)
will be referred to as a wormhole basis.

All the wormhole kernels that form a wormhole basis,
can be grouped into C = {Cj}, j = 1...NB. The distance
function between two points (x and y) is defined as:

D(x, y, C) = min(B(x, y, Cj)), j = 1, ...NB (3)
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Figure 2. The use of multiple wormhole bases
({a, b, c}, {d, e}, {f, g})allows different regions
(colours) to be pulled close together.

Such a combination of wormhole bases allows us to par-
tition the space into smaller sub-spaces that can then be
pulled close together (see Fig. 2).

3 Distance function Learning using Relative
Examples

This section shows how the kernel centres are chosen and
subsequently how the distance-bases are formed using an
algorithm inspired by the Boosting method [3] of learning.
The learning framework consists of two major steps. The
first step learns primitive wormhole-bases, each containing
only two kernels. It was found that this is enough to give a
very low training error. However, it does not provide good
generalisation capabilities. To address this, a second step
whereby these simple distance-bases are merged together
to form a more general distance function is introduced.

Before the algorithm is described, a few definitions are
provided. A training dataset consisting of NT relative com-
parison triplets is defined as: Tj = {tji}3

i=1, j = 1...NT .
These training triplets are created in such a way that tj1
is closer to tj2 than tj3. The entire training dataset is de-
fined as T = {Tj}NT

j=1. Additionally, each training example

is associated with a weight W = {wj}NT

j=1. Given a set
of wormhole bases C, the training examples T , and their
weights W , the training error function E(T, W, C) is de-
fined as follows:

E(T, W, C) =
NT∑
j=1

wjG(Tj , C) (4)

G(Tj , C) =
{

1 (D(tj1, tj2, C) > D(tj1, tj3, C))
0 (D(tj1, tj2, C) < D(tj1, tj3, C))

}
(5)

where G(Tj , C) is the individual error function for the jth

triplet given a set of distance bases C. To obtain the set of
potential primitive distance-bases, the first two examples of
each training triplet is used: Kk = {tk1, tk2}. The entire set
of primitive distance bases are denoted as: K = {Kk}NT

k=1.
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Figure 3. The learnt distance applied to the
3 cluster problem. a) groundtruth, b) learnt
primitive wormholes.

3.1 Learning and Merging Primitive
Wormholes

The algorithm for learning the primitive distance-bases
primarily revolves around a distance-basis selection loop.
Within this loop, a new primitive wormhole-basis is chosen
that provides the smallest training error and is then added
into the existing set. The loop terminates when the training
error falls below a threshold t. An example of the result of
the algorithm applied to the three non-linear cluster problem
(see Section 3.2 for details) can be seen in Fig. 3b. The
primitive wormhole-bases are shown as lines linking two
kernel centres. The algorithm will result in a set of NB

wormhole-bases C as follows:

1: Initialisation Step
(i)NB = 0, M = 1, wj = 1, j = 1...NT

(ii) C0 = {} {No distance bases found yet}
2: while

∑NT

j=1 wj > t do
3: Kbest = argminKbest∈K E(T, W, {CM−1, Kbest})

{ Find least training error distance-basis }
4: CM = {CM−1, Kbest}
5: wj = G(Tj , CM ), j = 1...NT { Update the weights

}
6: M = M + 1
7: end while
8: NB = M , C = CM , break

To obtain a distance function with better generalisation
capabilities, it is necessary to merge the above primitive
distance-bases together. This is achieved by merging two
distance bases together if the result of this action does not
cause the existing training error to increase. An example of
the merging algorithm applied to the 3 cluster problem is
shown in Fig. 3. Each figure shows a group of kernels (red
squares), the result of merging various primitive wormhole
bases into a single larger wormhole.
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Figure 4. Example of 4 different merged
wormhole bases kernels

3.2 Clustering Synthetic Data

To illustrate the algorithm working on synthetic data, the
learning method was applied to a non-linear set of 3 clusters
(see Fig. 3a). Training data triplets are produced by ran-
domly selecting two points from the same cluster and the
third from any other random cluster. A distance function
is learnt using the training data. The resulting wormholes
before merging in Fig. 3and after merging can be seen in
Fig. 4. The results of the learnt distance function are shown
in Fig. 5. A random point from each class is chosen from
the test dataset (black box in Fig. 5a, c, e). The distance
of this point to all the other points in the figure is calcu-
lated using the learnt distance function. The points which
are “close” (i.e. distance less than a pre-defined threshold)
to the selected point are filled red circles in Fig. 5(b,d,f). A
distorted space using the distance measures is shown in Fig.
5c,f. Here, the selected point is made the origin, all other
points are projected onto a unit circle around the origin and
scaled using their respective distances. The circle defines
the isocontour boundary from the origin.

4 Clustering Sparsely-labelled Images

In this section, we will describe how we perform object
clustering on only partially labelled images. The COIL im-
age database was used for this purpose. This database con-
sists of a series of images of objects rotating on a turn-table.
Initially, salient feature points using the method proposed
by Kadir and Brady [2]. A kernel function computing the
sum of distance between the nearest neighbours of a set of
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Figure 5. 3 cluster experiment results

feature points to another set of feature points is used. We
note the above kernel is far from adequate for clustering
images. Thus, we aim to improve on this by learning a dis-
tance function on top of these non-robust kernels. The test
triplets are generated using two successive frames of the ro-
tation sequence of each object as similar points and a ran-
dom frame from some other object as being dis-similar. A
subset of images for each object was used for training the
two distance functions, whilst the remaining used for test-
ing. The inadequacies of the original distance function are
shown in the MDS visualisation of its test-set distance ma-
trix (see Fig. 6a), where there is greater overlap between
images of different objects. Using the wormhole distance
function, we can successfully separate data in each class
and discovering the total number of classes (see Fig. 6b).

5 Conclusion

In this paper, an alternative learnable distance function
using multi-kernel wormhole-bases was proposed. Each
wormhole basis has the effect of connecting areas that may
be far away together. Crucially, the use of kernels allowed
the application of this function to not only fixed-dimension
vector data but also symbolic data. The use of relative
comparisons for training data avoided needing labelled or
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Figure 6. Visualisation of distance matrices
of COIL database. On top are the 9 object
used and their representative glyphs.

quantitative information. Two algorithms were proposed
for learning the distance functions: The first algorithm for
building a set of basic distance bases; a second algorithm
for increasing generalisation by merging different distance
bases together. The learning algorithms were shown to have
been successfully applied in learning suitable distance func-
tions for various clustering problems, ranging from syn-
thetic non-linear 2D data to symbolic representations of
sparsely labelled images.
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