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Abstract

In this paper we propose a practical and efficient method
for finding the globally optimal solution to the problem of
camera pose estimation for calibrated cameras. While tra-
ditional methods may get trapped in local minima, due to
the non-convexity of the problem, we have developed an ap-
proach that guarantees global optimality.

The scheme is based on ideas from global optimization
theory, in particular, convex under-estimators in combina-
tion with branch and bound. We provide a provably optimal
algorithm and demonstrate good performance on both syn-
thetic and real data. 1

1 Introduction and Problem Formulation

One of the basic problems both in computer vision and
in photogrammetry is the pose estimation problem. Given
a number of correspondences between points in 3D space
and the images of these points, the pose estimation prob-
lem consists of estimating the rotation and position of the
camera. Here the camera is assumed to be calibrated. A
typical application is shown in Figure 1, where the object is
to relate a camera to a scanned 3D model of a chair.

This problem has been studied for a long time. The
minimal amount of data required to solve the problem is
three points and in this case there are up to four solutions.
This result has been shown a number of times, but the ear-
liest solution is to our knowledge due to Grunert, already
in 1841, [2]. A good overview of the minimal solvers and
their numerical stability can be found in [3]. Given at least
six point correspondences the predominant method to solve
the pose estimation problem is by using the DLT algorithm
as a linear starting solution for a gradient descent method,
see [4]. A global method for uncalibrated camera pose can
be found in [5] and for the registration problem, see [7].
There are also quasi-linear methods that give a unique so-
lution given at least four point correspondences, e.g. [8].

1This work has been funded by the European Commission’s Sixth
Framework Programme (SMErobot grant no. 011838), the VISCOS
project funded by the Swedish Foundation for Strategic Research, and by
the Swedish Research Council (grants no. 2004-4579, and no. 2005-3230).

Figure 1. Chair experiment with 3D-scanner

These methods solve a number of algebraic equations, and
do not minimize the reprojection error.

In this paper we develop an algorithm that minimizes the
norm of the reprojection errors, that is, a non-linear least-
squares problem. Given a Gaussian noise model for the im-
age measurements and assuming i.i.d., the ML estimate is
obtained. Throughout the paper, a calibrated pinhole cam-
era model is utilized, see e.g. [4]. Given m world points Xi

(represented by 3-vectors) and corresponding image points

xi =
[
x1

i x2
i

]T
, we want to find the camera translation t

and rotation R that minimizes f :

f(R, t) =
∑m

i=1 d(xi, π(Xi))2 =
∑m

i=1

((
x1

i − rT
1 Xi+t1

rT
3 Xi+t3

)2

+
(
x2

i − rT
2 Xi+t2

rT
3 Xi+t3

)2
)

, (1)

where π(·) is the perspective projection with RT =[
r1 r2 r3

]
and tT =

[
t1 t2 t3

]
.

We will in the next section show how to derive a branch
and bound algorithm that finds the global optimum for (1).

2 A Branch and Bound Algorithm for the
Camera Pose Estimation Problem

In this section we derive a simple branch and bound algo-
rithm (cf. [6]) for the camera pose problem using the tech-
nique of convex under-estimators

Branch and bound algorithms are iterative methods for
finding global optima of non-convex problems. They work
by calculating sequences of provably lower bounds, which
converge to the global minimum. The result of such an al-
gorithm is usually an ε−suboptimal solution, i.e., a solution



that is at most ε from the global minimum for a predeter-
mined value of ε.

Consider the following problem. We want to minimize
a non-convex function f(x) over a rectangle D0. For any
sub-rectangle Dn ⊆ D0, let fmin(Dn) be the minimum
value of f on Dn and let flow(Dn) be a lower bound
for f on Dn. We require that the approximation gap
fmin(Dn) − flow(Dn) goes uniformly to zero as the max-
imum length of the sides of Dn goes to zero. If such a
lower-bounding function can be obtained then a strategy to
obtain an ε-suboptimal solution is to divide the domain into
rectangles, such that the approximation gap is less than ε ev-
erywhere, and compute flow in each rectangle. However the
number of such rectangles increases rapidly and therefore
this may not be feasible. To avoid this problem a strategy
to create as few rectangles as possible can be deployed. As-
sume that we know that fmin(D0) < k. If flow(Dn) > k
for some n then there is no point in refining Dn further since
the minimum will not be attained in Dn. Thus Dn and all
Dk ⊆ Dn can be discarded.

Now we will derive a parametrization of the objective
function for the camera pose estimation problem. Re-
call that the problem is to find a rotation R and a trans-
lation t such that (1) is fulfilled. A common way to
parametrize rotations is to use quaternions (see [1]). Let
q = (q1, q2, q3, q4)T be the unit quaternion parameters of
the rotation matrix R. We note that when parametrizing
with quaternions, equation (1) can be rewritten as

f(q, t) =
2m∑
i=1

(
qT Aiq + aT

i t

qT Biq + bT
i t

)2

, (2)

where Ai and Bi are 4×4-matrixes, ai and bi 4×1-vectors,
determined by the data points xi and Xi. This is a non-
convex rational function in seven variables.

To obtain lower bounds on this function we proceed
by formulating a convex optimization problem for which
the solution gives a lower bound. The quadratic forms
qT Aiq + aT

i t and qT Biq + bT
i t contain terms of the form

qiqj . Therefore we introduce the new variables sij = qiqj

or equivalently:

sij ≤ qiqj , (3)

sij ≥ qiqj , (4)

i = 1, .., 4, j = 1, ..., 4. The constraints (4) are convex
if i = j and (3) is not convex for any i, j. If we replace
qiqj in (3) with its concave envelope (see [9]) and qiqj in
(4) by its convex envelope then (3) and (4) will be convex
conditions. By doing this we expand the domain for sij and
thus the minimum for this problem will be lower or equal to
the original problem. The relaxed versions of the equations
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Figure 2. Upper and lower bounds of s11, which re-
laxes q2

1 in the interval [−1 , 1 ]. Left: the initial bound.
Right: when the interval has been divided four times.
Note the lower bound is exact since q2

1 ≤ s11 is convex.

(3) and (4) for i �= j is

−sij + qiq
U
j + qU

i qj − qU
i qU

j ≥ 0, (5)

−sij + qiq
L
j + qL

i qj − qL
i qL

j ≥ 0, (6)

sij − (qiq
L
j + qU

i qj − qU
i qL

j ) ≥ 0, (7)

sij − (qiq
U
j + qL

i qj − qL
i qU

j ) ≥ 0. (8)

If i = j then the concave envelope of (3) is simply a line
aqi + b, where a and b are determined by noting that the
values (qL

i )2 and (qU
i )2 should be attained at the points qi =

qL
i and qi = qU

i , respectively. Figure 2 shows the upper and
lower bounds of s11 when −1 ≤ q1 ≤ 1. We see that even
when the interval has only been divided four times the upper
bound is quite close to the lower bound. This gives some
indication on the convergence speed of the lower bounds.

The terms (qT Aiq + aT
i t)2 and (qT Biq + bT

i t)2 in the
objective function (2) can now be rewritten as (Âiq̂)2 and
(B̂iq̂)2 respectively. Here q̂ is a 13×1 vector containing the
parameters (t1, .., t3, s11, s12, ..., s44) and Â, B̂ are 13×13
matrices. The expression (Âiq̂)2 is the square of a linear
function and is therefore convex.

It is well known that a rational function with linear de-
nominator and quadratic numerator of the form x2/y for
y > 0 is convex. Therefore by replacing the denominator
with the affine function ci(B̂iq̂i) + di (that is, the concave
envelope of (B̂iq̂)2), a convex under-estimator of the orig-
inal cost-function is obtained. The constants ci and di are
determined from the bounds on qi and ti. The full convex
function is then

flow(q̂) =
2m∑
i=1

(Âiq̂)2

ci(B̂iq̂) + di

. (9)

Minimizing this function subject to the constraints on sij

yields a lower bound on the original objective function (1).
At the same time, one can compute the actual value of the
objective function f . If the difference is small (less than ε),
one can stop. As the intervals on qi, i = 1, . . . , 4 are divided



into smaller ones, it can be shown that the lower bound flow

converges uniformly to the function (2), cf. [9].
To simplify the problem further, we make the following

modifications. Without loss generality, one can choose the

world coordinate system such that Xi =
[
0 0 0

]T
for

some i, since the cost-function is independent of the world
coordinate frame. Further, as the cost-function is a rational
function of homogeneous quantities, it can be dehomoge-
nized by setting t3 = 1. Thus, for point i we obtain

d(xi, π(Xi))2 = (x1
i − t1)2 + (x2

i − t2)2. (10)

Note that this is a convex function. Further, we can restrict
the search space by enforcing a maximum error bound on
the reprojection error for this point, say γmax pixels. This
results in bounds on tj such that xj

i − γmax < tj < xj
i +

γmax for j = 1, 2.
Since t3 can be geometrically interpreted as the distance

from the camera centre to the point Xi (along the optical
axis), we have effectively normalized the depth to one. This
effects the bounds on qi as well. Suppose a lower bound
on t3 for the original homogeneous camera is tlow

3 , then
the new bounds for the dehomogenized quaternions become
−1/tlow

3 ≤ qi ≤ 1/tlow
3 for i = 1, . . . , 4. A conservative

lower bound on t3 can easily be obtained by examining the
distances between the given world points.

3 Experiments

Even though the cost-function is highly non-convex, one
might ask if local minima actually occur for realistic sce-
narios and if so, how often. Therefore, we first generated
random 3D points within the unit cube [−1 , 1 ]3 and a ran-
dom camera with viewing direction toward the origin, with
a distance of two units. Then, the projected image coordi-
nates were perturbed with independent Gaussian noise with
different noise levels. To the left of Figure 3, a histogram
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Figure 3. Left: Histogram of local minima with 4
points. Right: The percentage of times the global op-
timum is attained for 6 points.

of the number of local minima that occur for four points is
plotted. The local minima have been computed with ran-
dom initializations (in total, 100 tries) and the experiment
has been repeated 1000 times. Note that all local minima

(a) (b)

Figure 4. (a) Reconstructed cameras and (b) resulting
VRML model

Residuals: Our Alg. Lin.Method Lin.+Bundle
camera 1 1.351 10.76 1.351
camera 2 0.939 44.60 10.01
camera 3 0.950 4.741 0.950

Table 1. The RMS reprojection error measured in pix-
els, obtained when using all 14 points.

have positive depths (that is, world points are in front of the
camera). There are typically 4-6 additional local minima
with negative depths. To the right of Figure 3, the percent-
age of times the correct global optimum is reached for six
points is shown. For our algorithm (optimal), the global op-
timum is of course always obtained. The traditional way is
to apply a linear algorithm (DLT) which requires at least
six points, and then do local refinements (bundle adjust-
ment) [4]. As one can see, one might get trapped in a local
minimum even for small noise levels. The following two
subsections present experiments made with real data.

Chair Experiment

The setup for the chair experiment can be viewed in Fig-
ure 1. We used a MicroScribe-3DLX 3d scanner to mea-
sure the 3D-coordinates of the black points on the chair. For
the first experiment we took three images of the chair and
used the images of the 14 scanned 3D points to calculate
the rotation and translation using our method. The intrinsic
camera calibration was computed with standard techniques
[4]. The reconstructed cameras are shown in Figure 4a. Us-
ing the images and the reconstructed cameras, it is easy to
get a textured 3D model from the scanned model, see Fig-
ure 4b. Table 1 shows the resulting reprojection error mea-
sured in pixels. For this particular camera the resolution was
1360×2048 and the focal length was 1782. For comparison
we also tried to solve the problem with a linear method with
and without bundle adjustment. The linear method first cal-
culates a projective 3 × 4 camera matrix P , and then use
SVD factorization to find the closest camera matrix such
that P̂ = [R | t] where R is a scaled rotation matrix. As ex-
pected the linear method without bundle performs poorly.
Also note that for the second chair image the bundle adjust-
ment yields a local minimum. In Figure 5 the difference
between the solutions obtained when not using all points is



illustrated. Here we regard the solution obtained when us-
ing all 14 points as the true solution. In Figure 5 the angles
between the principal axis of the resulting camera matrix
and the principal axis of the true solution are plotted. The
red bars show the results when using from 4 to 13 points in
the first image. The black bars show the same when using
the second image, and the yellow bars give the result for the
third image. Note that the computed solution is very similar
already from 4 points to that of using all 14 points.
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Figure 5. Angles in degrees between the principal axis
of the optimal solution with 14 points and the solutions
with 4-13 points, for the three chair experiments.

To illustrate the convergence of the algorithm, the perfor-
mance of the algorithm for the two first images of the chair
is plotted in Figure 6. To the left, the number of feasible
rectangles at each iteration for the first chair image using 6
(red), 9 (green) and 12 (blue) points is given. To the right,
the analogous plot for the second chair image is given.

Dinosaur Experiment

To further demonstrate the robustness of the algorithm, we
have tested the algorithm on the publicly available turntable
sequence of a dinosaur, see Figure 7b for one of the 36 im-
ages. The full reconstruction of 3D points and camera mo-
tion are also available, obtained by standard structure and
motion algorithms [4]. For each of the 36 views, we have
taken four randomly chosen points visible in that image and
then estimated the camera pose. The resulting camera tra-
jectory including viewing direction is compared to the orig-
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Figure 6. Convergence of the branch and bound algo-
rithm. The number of feasible rectangles at each itera-
tion for two of the chair images using 6 (red), 9 (green)
and 12 (blue) points.

(a) (b)

Figure 7. (a) The recovered camera motion for the
dino experiment. Camera motion from full bundle ad-
justment red curve and using only four points blue curve.
(b) One of 36 images of the dinosaur sequence.

inal camera motion in Figure 7a. Note the even though
only four points have been used, the camera motion (blue
curve) is very close to that of full bundle adjustment using
all points (red curve).

4 Conclusions

In this paper, a globally optimal algorithm for perspec-
tive camera pose has been presented. The algorithm has
been tested on both synthetic and real data, showing good
performance. In addition, we have demonstrated that local
minima do occur in practice making traditional algorithms
less attractive.
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