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Abstract—We present a method for merging multiple partitions
into a single partition, by minimising the ratio of pairwise
agreements and contradictions between the equivalence relations
corresponding to the partitions. The number of equivalence
classes is determined automatically. This method is advantageous
when merging segmentations obtained independently. We propose
using this consensus approach to merge segmentations of features
tracked on video. Each segmentation is obtained by clustering
on the basis of mean velocity during a particular time interval.

I. INTRODUCTION

Motion is an important cue for object segmentation and
finding regions of similar motion is an important step for
computer vision applications such as object detection and
tracking.

Pixels corresponding to objects in motion can be grouped
on the basis of their appearance and relative motion [1].
Appearance models of dense features have been used for two-
layer segmentation [2] (where each layer is a set of features
that follow the same motion in the image plane) and multiple-
layer segmentation [3]. Such global methods minimise an
energy functional constructed from local appearance, imposing
a constraint on the motion. For example, in [4], the constraint
is given by a Hidden Markov Model of actions, alternating
between segmentation and model fitting. Another constraint
is that a higher derivative of the position of each feature
is bounded, effectively requiring smooth motion. But dense
optical flow is a highly redundant representation of motion.
Feature trackers [5]-[8] effectively reduce the amount of
motion to process to a few features chosen to maximise the
stability of their appearance along time. Common fate can be
used to group features tracked into objects.

Relative motion models have been used by [9], depending
only on the position of tracked features, and not on their
appearance. Groups of features were split and merged using
an on-line update which assumed features from the same
object undergo an affine transformation between frames, at the
cost of sensitivity to tracking errors and density of features.
Each feature group had an associated reference frame, and
the affine transform was defined with respect to that frame.
Features were segmented differently during initialisation and
update. Such approaches will fail when there is a lack of
support for affine grouping, for example when the geometric
transformations involved are degenerate, or the features are
short lived and there is not sufficient overlap in their support
intervals.

In [10] a consensus of segmentations of an image’s pixels
was achieved by constructing a matrix that counted the number
of times two elements were grouped together, effectively
building a histogram of instances of an equivalence relation.
Their approach included a statistical measure of consensus, in
order to choose the number of clusters that achieved the best
consensus. This approach for merging multiple segmentations
into one can in principle be applied to any other kind of
segmentation, including the segmentation of sparse features.

We propose an algorithm that takes feature trajectories and
uses the mean velocity over different time intervals to produce
a family of independent segmentations that capture motion at
a variety of granularities. This is in contrast with [9], where
groups of features were formed and destroyed on-line, in order
to allow the detection of groups of objects moving at different
velocities. Each of our segmentations corresponds to motion
saliency at different time scales, and, because features are
relatively short lived, segmentations are defined on overlapping
sets of features.

The reason why time intervals of multiple lengths are
considered is that sets of features which move together over
short timescales may separate over larger timescales due to
objects, parts of objects or groups of objects moving apart. In
contrast, objects, parts or groups which remain together over
a long timescale may exhibit different short-term motion.

A binary partition is then obtained for each time interval
by applying the k-means algorithm, using Euclidean distance,
to an estimated mean velocity. Multiple partial segmentations
are then merged into a single segmentation by a consensus
algorithm. Each segmentation is considered as an equivalence
relation defined on a subset of features, over a particular time
interval. Features which should fall in the same class but
do not appear in the same segmentations, are linked through
transitivity. For example, if features a and b appear in the same
class in frame 100, and features b and c appear in the same
class in frame 110, then features a and c should belong to the
same class, unless there is a segmentation which separates
them. The consensus algorithm approximates the simplest
segmentation which does not group together features which
were separated in any of the partitions. Although each partition
has only two classes, the consensus algorithm generates as
many classes as needed.

Section II describes a method to segment features on the
basis of their mean velocity at a particular time interval.
Section III presents the consensus method, which can be



applied to any kind of partial set partitions. The implied
motion model is that an object is a maximal set of features that
have a distinct velocity at different time scales, requiring no
other geometric spatio-temporal constraints such as Euclidean
or affine similarity. Experiments on videos of people walking
in an underground station are used to illustrate the algorithm.

II. SEGMENTATION OF A TIME INTERVAL

Feature tracks are grouped together on the basis of their
estimated mean velocity during a time interval. In this section
we explain how a segmentation is produced from a number of
such tracks, {p;}, given an interval (t —€,t + €).

Each track consists of temporally and spatially contiguous
coordinates. In practice, this is the position at time ¢, p(t), for
a time interval. The mean velocity v;(¢, €) of each track p; in
the interval (¢t — €, ¢ + €) is computed by finite differences on
the features’ positions in frames ¢ — € and ¢ + €.
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The velocity estimates {v;} are partitioned into two sets using
k-means on the Euclidean distance. In order to favour segmen-
tations with the smallest number of groups, the parameter k
in the k-means algorithm was set to 2, the number of groups
will typically be greater than 2 after consensus.

Time intervals (t — €, ¢ + €) are varied in centre and width.
Different interval centres ¢ are chosen in order to contain
overlapping sets of features, and different interval radii € are
chosen to measure the mean velocity of features over different
scales. The choice of intervals will therefore depend on the
lifespan of the trajectories produced by the feature tracker.

Each of those time intervals will yield a partial segmentation
P; which is not defined on the entire set of features but on
a subset S;. Features which belong to the same object in
motion but do not appear in the same frame, should be grouped
together by transitivity on their relation with common features.
This is done by the consensus algorithm.

V; (t, E)

ITI. CONSENSUS OF SEGMENTATIONS

In this section we describe how the family of segmentations
{P;} is merged into a single segmentation. In [10] the sum
of adjacency matrices for all P; was computed. We normalise
this sum over the number of support sets S; in which the two
features in a pair are present. We will also simplify the choice
of number of segments by introducing a threshold over the
resulting matrix, and then computing an approximation of its
transitivity closure [11].

Each segmentation P; corresponds to an equivalence rela-
tion ~; defined over the features S; for which the segmenta-
tion is defined. Two elements a and b in S; are related, and
we denote it as P;(a) = P;(b) if they belong to the same class
in P;. The purpose is to define a single equivalence relation
~ over all the features U;S;, which is maximally consistent,
in some sense, with the relations ~ ;.

A family of equivalence relations {~;} is consistent over
two elements a and b when the ratio of number of relations %

such that a ~; b over the number of relations such that a »¢; b
is above a threshold .

The criterion for relation consensus is to maximise the con-
sistency of the merged relation with each of the contributing
relations, and also maximise the number of relation instances
in the merged relation (which corresponds to minimising the
number of equivalence classes or segments).

a) Consensus algorithm: Given a set (), subsets
{Sk}p_,, and a partition Py, of each Sy, Py : S, — {1,2,...},
produce a partition P of {2 that approximates the transitivity
closure of thresholded ratios of pair-wise agreements over
contradictions with each partition Pj:

1) define the matrix A as

aij = {k i, € Sk, Px(i) = P(4)} |
2) define the matrix B as

bij =|{k : 1,5 € Sk, Pr(i) # Pr(j)} |

}
3) for 0 < A < 1, define element-wise Cy = (% > \) for
a scalar threshold A.
4) Compute possibly overlapping family of sets D, formed
by the equivalence classes X} defined in the following
way: let Gy = (2, by iterating for increasing k until G,
is empty:
a) choose an element g; from Gy.
b) compute X as the equivalence class of g in (.
c) define Gi1 = G — Xk
5) Compute P as the partition given by the the maximal
non-overlapping subsets Ej, = G, — Uiz G).
Note that this algorithm is sensitive to the choice of represen-
tatives g in step 4.a.

The partitions being defined over non-overlapping sets Sk,
and therefore features which are not directly related by any
particular segmentation might end up in the same equivalence
class, this is achieved by computing the transitivity closure of
the final relation (Step 4) which is enforced by grouping into
sets Xj. But, in order to avoid one single misclassified feature
to join two equivalence classes together, features which appear
in two different classes are removed (Step 5). The threshold
A can be chosen, for example, to minimise the number of
features dropped in this way.

IV. EXPERIMENTS

A sequence from the i-LIDS dataset, made available for
research by the UK Home Office [12], were processed using
an implementation of the KLT feature tracker [5], [7], [8] with
default settings, requesting 700 features. Affine checks were
switched off in order to maximise the length of feature tracks.

The video was filmed using a public transport surveillance
camera. It shows pedestrians walking on an underground
platform and trains arriving and departing. Which regions
were segmented out depended on the radius e of the sampling
interval (¢ — €,t + ¢) around frame ¢, as shown on Figure 1.
Applying the consensus algorithm to segmentations obtained
with fixed ¢ and increasing e, produces a segmentation which



Fig. 1. Segmentation of the mean velocity computed over the interval centred
on frame 50 with e = 2
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Fig. 2. Number of features dropped for each choice of A(scaled x 100).

separates different objects in motion. Trains were segmented
out for low values of e, typically between 2 and 6 frames.
Pedestrians were segmented out for higher values of e, typ-
ically around 12 frames. The number of features segmented
decreases exponentially for increasing €, and features on faster-
moving objects exist during a narrower interval. Pedestrians
are segmented out for values of € for which there are no train
features.

The number of features for a particular segmentation can
be increased by applying the consensus algorithm for various
values of ¢t. For a fixed €, consensus of segmentations with
varying ¢ produces binary segmentations showing a particular
objects in motion: a train or a group of pedestrians. Then,
consensus is applied again to produce a segmentation into
multiple classes that separates the multiple objects in motion.

A rational choice of threshold A in the consensus algorithm
would be a value that minimises the number of features
that are discarded. In the experiments it was observed that
such a choice corresponded to good segmentations. Figure 2
shows the number of features dropped as a function of A
when performing consensus of the 11 partitions with e = 24,
t = 1000 and ¢ offset by —5,—4,...,4,5. The value A = 0.5
was used in the consensus algorithm when computing the
bottom-right segmentation of Figure 3.

V. CONCLUSION

We have presented an algorithm for segmentation of tracked
features which does not rely on rigidity assumptions and uses
the output of an off-the-shelf feature tracker and for which

the features in each segmented region have similar mean
velocities over different scales. It first produces a family of
partial partitions of the sets of features, each of them defined
over a time interval. It then selects automatically the number
of objects in motion. It uses an algorithm for consensus of
multiple segmentations, which effectively obtains new relation
instances between unrelated features by applying transitivity.

The underlying motion model only requires that features
belonging to the same object have a distinct mean velocity
at different time intervals, avoiding rigidity constraints. This
consensus method is advantageous when exploiting the infor-
mation from data partitions obtained independently and the
number of clusters is unknown.

Future work will be directed towards making a well-founded
choice of sampling intervals.
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Fig. 3. Segmentation (top and middle) and consensus (bottom) for frames 1000 (left) and 1250 (right).



