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Abstract

Recent research activity on stereo matching has
proved the efficacy of local approaches based on ad-
vanced cost aggregation strategies in accurately re-
trieving 3D information. However, accuracy is typi-
cally achieved at expense of computational efficiency,
with best methods being far from meeting real-time re-
quirements. On the other side, basic real-time local al-
gorithms relying on a rectangular correlation window
suffer from significant ambiguity along depth borders
and untextured areas. This work proposes a novel lo-
cal approach aimed at maximizing the speed-accuracy
trade-off by means of an efficient segmentation-based
cost aggregation strategy.

1. Introduction

Stereo matching algorithms are currently classified
between local and global methods [15]. Typically, local
methods are simple and fast [2, 5, 8, 10] while global
ones can achieve a higher degree of accuracy in re-
trieving disparity information [12, 16, 22]. Recently,
many stereo matching algorithm relying on image seg-
mentation and aimed at improved accuracy have been
proposed [1, 6, 9, 11, 12, 16–18, 21, 22, 24]. The great
majority of these methods are global, and a subset of
them [1, 12, 16, 22] represents currently the most accu-
rate methods on the Middlebury Stereo Evaluation web-
site [14], which is the standard benchmark platform for
the stereo community. Anyway, the computational bur-
den they require is far from meeting real-time or near
real-time requirements.

As reported in a recent paper [19], local approaches
that are state-of-the-art in terms of accuracy are based
on segmentation [18] or adaptive weights [23], but are

far from being computationally efficient. Indeed, apart
from GPU or hardware-based implementation, typically
only aggregation strategies based on sets of rectangular
windows [2, 5, 10, 20] can afford real-time or near-real-
time processing, this implying a notably reduced accu-
racy of retrieved disparities. Exceptions are represented
by methods [6, 7], whose aggregation strategies rely
on segmentation and that exhibit interesting trade-offs
between accuracy and computational efficiency [19].
Moreover, between those methods for which a GPU im-
plementation has been proposed [8], no one so far de-
ploys segmentation.

The idea which motivates this work is to propose
a novel aggregation strategy deploying segmentation
aiming at high efficiency and at the same time as ac-
curate as to improve the results of fast local stereo algo-
rithms. This lead us to devise a method which improves
significantly the performance-cost trade-off, yielding a
level of accuracy comparable to that of segmentation-
based methods and capable to meet near-real time pro-
cessing requirements.

2. Cost aggregation strategy

Let Ir and It be respectively a reference and a target
image of a stereo pair, and let p ∈ Ir, q ∈ It be a pair of
points at disparity d for which correspondence is being
evaluated. The proposed aggregation scheme deploys a
variable support, that is at each correspondence (p, q)
the set of points around p and q on which the local sim-
ilarity measure (or local cost) is computed depends on
the local characteristics of the images. Similarly to most
stereo matching algorithms deploying segmentation, the
proposed aggregation strategy relies on the assumption
that disparity varies smoothly within points lying on the
same segment (this is true in practice especially if im-
ages are over-segmented). Thus, the idea is to shape the



Figure 1. Examples of the behaviour of the
proposed aggregation cost

variable support at each correspondence based on infor-
mation derived from image color segmentation. This is
achieved by computing for each correspondence (p, q)
at disparity d an aggregation cost defined as:

Cs(p, q, d) =
∑

pi∈Sp

min (δ (pi, qi,d) , Tr) (1)

where Sp is the segment on which p lies, δ(p, q) is the
computationally efficient L1 distance between the RGB
components of p and q:

δ(p, q) = |Rp − Rq| + |Gp − Gq| + |Bp − Bq| (2)

and Tr is a fixed threshold. In practice, Cs represents
the sum of the truncated absolute differences (TAD)
over the segment on which p lies. The use of the trun-
cation value Tr is a very basic M-estimator to enhance
robustness toward outliers (in our experiments, Tr is set
to 35).

Cs can be efficiently pre-computed by means of a
single image scan for each possible disparity within the
disparity range. Moreover, it tends to be notably accu-
rate along depth borders since disparity edges tend to
coincide with color edges on real images. Furthermore,
within low-textured regions segments tends to be very
big, which results in a high SNR and hence good ro-
bustness of Cs toward matching ambiguities. However,

relying only on the segmentation cue might lead to mis-
takes, since Cs tends to assign the same disparity value
to all points belonging to the same segment. This leads
to mistakes for those points lying at slightly different
depths from the majority of elements of a segment, e.g.
on slanted surfaces. Furthermore, it also tends to de-
crease matching distinctiveness along highly-textured
regions, where segments tend to be particularly small.
Hence, we modify (1) to include also a corrective term
based on a squared correlation window:

Caggr(p, q, d) =
Cs(p, q, d)

n(Sp)
+ α · Cw(p, q, d)

(2r + 1)2
(3)

where Cw is the TAD over the squared window Wp(r)
of radius r and centered on p:

Cw(p, q, d) =
∑

pi∈Wp(r)

min (δ (pi, qi,d) , Tr) (4)

Cost Caggr includes a normalization of the two terms
Cs, Cw by the total number of points in, respectively,
Sp and Wp. This is useful because, while the area of
Wp(r) is fixed, the number of points in each segment,
n(Sp), varies with p: thus, the normalization stage al-
lows to weight equally each pixel included in Caggr . It
is important to point out that, thanks to the use of incre-
mental schemes [4,13] the complexity of the calculation
of term Cw amounts to only 4 elementary operations for
each point and disparity, and it is independent on the
choice of parameter r. Overall this results in a particu-
larly efficient aggregation strategy.

Fig. 1 depicts graphically the behaviour of the pro-
posed aggregation strategy in 4 different cases. In the
figure, the first column shows the reference colour im-
age, the second column shows the expected disparity
map and the third column illustrates the behaviour of
the proposed aggregation strategy. In particular, cost
Cs assures that the variable support is shaped accord-
ing to local chromatic cues. This is particularly useful
along depth borders (case a) and within low-textured re-
gions (b). Cost Cw, instead, adds a further weight for
those points that are close to p (i.e. spatially more cor-
related). Generally the role of cost Cw is to increase the
robustness of term Cs for those points violating the seg-
mentation assumption, e.g. for bordering regions along
slanted surfaces (case c). In addition, it is particularly
effective along highly-textured regions (case d), where
segments tend to reduce to a few pixels.

3. Further comments

The proposed aggregation strategy bears some re-
semblances with that proposed in [6], where for each



Algorithm Accuracy Tsukuba Venus Teddy Cones Art Books Dolls Laundry Moebius Reindeer MDS
Variable Windows 86.7 96.23 91.99 87.4 94.34 80.81 80.04 87.22 76.68 87.29 84.63 0.3

Proposed 86.4 97.04 96.47 89.33 95.08 78.72 81 85.64 74.89 84.88 80.48 18.9
Segmentation Based 83.3 94.3 93.92 90.35 92.69 76.22 79.86 84.75 61.7 81.09 77.75 5.9
Multiple Windows 82.1 94.42 95.82 85.46 91.18 72.68 78.31 81.36 64.23 80.79 76.66 2.7
Gradient Guided 79.4 92.99 87.66 80.46 88.03 72.17 72.86 83.93 61.48 76.15 78.27 3.2

Shiftable Windows 79.4 93.46 93.4 83.84 90.45 68.08 75.6 77.42 60.03 77.06 74.6 1.2

Table 1. Comparison of accuracy and MDS yielded by the proposed approach with respect to
different state-of-the-art local stereo algorithms.

correspondence (p, q) the variable support is defined as
the intersection between the points lying on the same
segment as p and those belonging to the current correla-
tion window. Nevertheless, if the working assumption
that disparity varies smoothly within points lying on the
same segment is verified, then the use of all points ly-
ing on Sp, rather than just those included in the current
correlation window shall yield improved matching ro-
bustness and thus less ambiguity. Moreover, to avoid
matching ambiguities due to few intersection points,
method [6] requires the use of big correlation windows
and the inclusion in the local cost with a smaller weight
also of the remaining points in the window, which tends
to increase inaccuracy. Furthermore, the efficient in-
cremental implementation of the aggregation strategy
proposed in [6] sacrifices accuracy for speed and tends
to deteriorate the accuracy of the results. Conversely,
our proposal can be directly implemented in an efficient
way without any loss in accuracy. This results in signif-
icant improvements in accuracy and speed, as shown in
next section.

The proposed aggregation strategy might be usefully
deployed either by a local algorithm or as the initial
stage of a global process based on e.g. Scanline Op-
timization [9] or Belief Propagation [16]. Moreover,
it is interesting to note that this aggregation strategy
could be symmetrically extended to include information
also from the color segmentation of the target image It,
rather than only that from Ir. This is not investigated
here for lack of space, but there are hints that it would
result in improved accuracy and lower computational
efficiency.

Finally, in our implementation we use Mean Shift [3]
to perform segmentation. This method yields accurate
segmentation but is not extremely fast: overall in our
experiments it accounts for a percentage between 40
and 80% of the total time. As a consequence, the pro-
posed method could be further speeded-up using a faster
segmentation method.

4. Experimental results

This section presents a comparison between the pro-
posed method and other state-of-the-art aggregation
strategies. Methods are evaluated within the same
plain WTA (Winner-Take-All) stereo matching frame-
work. In particular, as a term of comparison we selected
state-of-the-art efficient aggregation strategies based on
variable support [19], that is, Segmentation Based [6],
Shiftable Windows [2], Variable Windows [20], Multi-
ple Windows [10]. For what regards this last method,
the version based on 9 correlation window is used as
representative of the best accuracy-speed trade-off [10].
Methods [18, 23], though being state-of-the-art in ac-
curacy among local algorithms [19], have not been in-
cluded in our comparison since this paper focuses on
real-time or near real-time methods while these meth-
ods are far from compelling these requirements (e.g. on
the same platform and on Teddy, author’s code of [23]
runs in 18 minutes against 0.6 seconds of our approach).

For fairness of comparison, algorithms do not em-
ploy neither pre-processing nor post-processing such as
consistency check and interpolation. Moreover, the lo-
cal cost function is for all methods the TAD on RGB
values, except for Segmentation based which deploys
the Sum of Absolute Differences on RGB values plus
a more complex M-estimator, as originally proposed in
[6]. For what concerns the choice of parameters, all pa-
rameter values of the algorithms were optimally tuned
on the dataset. In particular, for the proposed method
the two parameters of the aggregation stage were set as
α = 0.9, r = 6. Finally, all algorithms were imple-
mented in C, without any kind of optimization based,
e.g., on SIMD instructions and tested on Intel Core Duo
2.14 GHz CPU.

Table 1 shows the results in terms of accuracy and
computational requirements yielded by the evaluated al-
gorithms on 10 stereo pairs belonging to the Middlebury
dataset [14, 15]. Accuracy is calculated as the percent-
age of retrieved disparities whose difference with the



ground truth is ≤ 1. Evaluated disparities relate to all
points of the disparity map except for occluded regions,
since local WTA methods do not explicitly handle oc-
clusions. As for computations, we report the millions
of computed disparity per second (MDS) averaged on
the whole tested dataset (for those algorithms deploy-
ing segmentation, the MDS includes also the overhead
time spent for segmentation). To allow for a qualitative
evaluation, all stereo pairs and disparity maps can be
found on-line 1.

From the table it can be inferred that Variable Win-
dows and the proposed approach outperform neatly all
the other methods in terms of accuracy on the evalu-
ated dataset, yielding comparable results. Nevertheless,
for what concerns computations Variable Windows re-
sults to be the slowest method, while our approach is the
fastest one, being almost two orders faster than Variable
Windows and more than 3 times faster than Segmenta-
tion based. Hence it is clear that overall our approach
yields the best accuracy-speed trade-off. It is interest-
ing to point out that processing time for our method is
around 0.2 s for Tsukuba (320×240, 16 disp., i.e. work-
ing at 5 fps.) and around 0.6 s for Teddy and Art (respec-
tively 450×675, 60 disp. and 463×370, 75 disp.), thus
achieving near real-time performance.

5. Conclusion and future works

An efficient aggregation strategy based on color im-
age segmentation has been proposed. Overall, the pro-
posed approach showed the capabilities to improve the
accuracy of fast local methods and can be regarded as an
interesting trade-off between accuracy and speed. Fur-
ther optimizations of the proposed approach, e.g. based
on GPU or SIMD instructions, might succeed in achiev-
ing even faster - perhaps real-time - performance.
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