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Abstract

Linear discriminant analysis (LDA) is a widely-used

feature extraction method in classification. However,

the original LDA has limitations due to the assumption

of a unimodal structure for each cluster, which is sat-

isfied in many applications such as facial image data

when variations such as angle and illumination can

significantly influence the images of the same person.

In this paper, we propose a novel method, hierarchi-

cal LDA(h-LDA), which takes into account hierarchical

subcluster structures in the data sets. Our experiments

show that regularized h-LDA produces better accuracy

than LDA, PCA, and tensorFaces.

1 Introduction

Linear discriminant analysis (LDA) has been one of

the most widely-used dimension reduction methods for

classification problems. However, LDA assumes that

each class is modeled as a unimodal Gaussian that can

be fully described only with the first and the second or-

der statistics, i.e., mean and covariance. In reality, there

is no guarantee that the data conforms to such assump-

tions. When the data is significantly dependent on other

factors than the cluster label of interest, the data corre-

sponding to a particular label cannot be simply modeled

as a unimodal Gaussian with a single mean and a covari-

ance.

In order to circumvent such problems, one may ap-

ply several variants such as nonparametric discrimi-

nant analysis (NDA) [2], subclass discriminant analysis

(SDA) [6], or regularized LDA [1]. NDA uses a non-

parametric version of the between-cluster scatter matrix

to relax the unimodal Gaussian assumption. SDA ap-

plies the multi-modal Gaussian model directly by re-

placing each cluster centroid with subcluster centroids

in the definition of the between-cluster scatter matrix.

Although regularized LDA was originally introduced

in order to avoid singularity of the within-cluster scat-

ter matrix for undersampled cases, regularization also

plays a role of controlling overfitting by adding a small

identity matrix to the within-cluster scatter matrix.

On the other hand, we can utilize the available in-

formation other than the cluster label. In face recog-

nition, various information such as angles, illumina-

tions, and/or pose of images may be incorporated so that

recognition performance can be enhanced [5].

In this paper, we propose a novel method called hier-

archical LDA (h-LDA) that formulates a new feature ex-

traction method based on the hierarchical structure with

depth-2 in the data. In h-LDA, clusters are considered

to have several subclusters determined by other factors

than the cluster label of interest, and such subclusters

do not need to be necessarily gathered closely as in the

unimodal Gaussian model. Based on this motivation,

h-LDA maintains the control against overfitting issues

that LDA has.

The rest of this paper is organized as follows. In

Section 2, the classical LDA is briefly reviewed, and

our new h-LDA is presented in Section 3. In section

4, a regularized version of h-LDA is introduced. Ex-

perimental results are reported in Section 6, and finally

conclusions are given in Section 7.

2 Linear Discriminant Analysis

In LDA, an optimal dimension-reduced representa-

tion of data is obtained by a linear transformation that

maximizes the conceptual ratio of the between-cluster

scatter (variance) versus the within-cluster scatter of the

data. In this section, we present an overview of the basic

ideas.

Given a data matrix A ∈ R
m×n, where n columns

ai, i = 1, . . . , n, of A represent n data items in an m

dimensional space, let us assume that it is partitioned
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into p clusters as

A = [a1 a2 · · · an] = [A1 A2 · · · Ap],

where Ai ∈ R
m×ni and

∑p

i=1 ni = n.

Let Ni denote the set of column indices that belong

to cluster i, ni the size of Ni, ak the data point rep-

resented in the k-th column vector of A, c(i) the cen-

troid of the i-th cluster, and c the global centroid. In

face recognition, Ai corresponds to the i-th person’s im-

age data set. The scatter matrix within the i-th cluster

S
(i)
w , the within-cluster scatter matrix Sw, the between-

cluster scatter matrix Sb, and the total (or mixture) scat-

ter matrix St, are defined, respectively, as

S(i)
w =

∑

k∈Ni

(ak − c(i))(ak − c(i))T ,

Sw =

p∑

i=1

S(i)
w ,

Sb =

p∑

i=1

∑

k∈Ni

(c(i) − c)(c(i) − c)T , and (1)

St =

p∑

i=1

∑

k∈Ni

(ak − c)(ak − c)T

= Sw + Sb. (2)

LDA finds the optimal linear transformation matrix,

GT : x ∈ R
m×1 → y ∈ R

l×1,

that maximizes

J1(G) = trace((GT SwG)−1(GT SbG)), (3)

which is the ratio of the within-cluster radius and the

between-cluster distance in the reduced dimensional

space.

3 Hierarchical LDA (h-LDA)

In many applications, the structure of the data cannot

be simply explained by the unimodal Gaussian model of

LDA. Relaxing such a simplified assumption, hierarchi-

cal LDA (h-LDA) assumes that the data in cluster i, Ai,

can be further clustered into qi subclusters as

Ai = [Ai1 Ai2 · · · Aiqi
],

where Aij ∈ R
m×nij and

∑qi

j=1 nij = ni.

Let Nij denote the set of column indices that belong

to the subcluster j in cluster i, nij the size of Nij and

c(ij) the centroid of each subcluster. For instance of fa-

cial image data, the set of images of a specific person

can be further clustered according to angles of view, or

illumination conditions. Then, we can define the scat-

ter matrix within subcluster j in cluster i, S
(ij)
ws , their

sum in cluster i, S
(i)
ws , and the scatter matrix between

subclusters in cluster i, S
(i)
bs

, repsectively, as

S(ij)
ws

=
∑

k∈Nij

(ak − c(ij))(ak − c(ij))T ,

S(i)
ws

=

qi∑

j=1

S(ij)
ws

, and

S
(i)
bs

=

qi∑

j=1

∑

k∈Nij

(c(ij) − c(i))(c(ij) − c(i))T .

Then, the within-subcluster scatter matrix Sws
and

the between-subcluster scatter matrix Sbs
are defined

respectively as

Sws
=

p∑

i=1

S(i)
ws

=

p∑

i=1

qi∑

j=1

S(ij)
ws

and Sbs
=

p∑

i=1

S
(i)
bs

.

From the identity

ak − c = (ak − c(ij)) + (c(ij) − c(i)) + (c(i) − c),

it can be proved that

St = Sws
+ Sbs

+ Sb (4)

where the between-cluster scatter matrix Sb is defined

as in Eq. (1). Comparing Eq. (2) and Eq. (4), the

within-cluster scatter matrix Sw in classical LDA is

equivalent to the sum of the within-subcluster scatter

matrix Sws
and the between-subcluster scatter matrix

Sbs
as

Sw = Sws
+ Sbs

. (5)

Now we propose a new within-cluster scatter matrix

Sh
w, which is a convex combination of Sws

and Sbs
as

Sh
w = αSws

+ (1 − α)Sbs
, 0 ≤ α ≤ 1, (6)

where α determines relative weights between Sws
and

Sbs
. By replacing Sw with a newly-defined Sh

w, h-LDA

finds the solution that maximizes the new criterion

L1(G) = trace((GT Sh
wG)−1(GT SbG)). (7)

Consider the following three cases: α ≃ 0, α ≃ 1, and

α = 0.5. When α ≃ 0 (see Figure 1(a)), the within-

subcluster scatter matrix Sws
is disregarded and the

between-subcluster scatter matrix Sbs
is emphasized,

which can be considered as the original LDA applied

after every data point is relocated to its corresponding



Figure 1. Example of h-LDA and the pa-

rameter α. All data points in each figure

belong to one cluster.

(a) α ≃ 0 (b) α ≃ 1

(c)-(i) α = 0.5 (c)-(ii) α = 0.5

subcluster centroid. When α ≃ 1 (see Figure 1(b)), h-

LDA minimizes only the within-subcluster radii, disre-

garding the distances between subclusters within each

cluster. When α = 0.5, the within-subcluster scatter

matrix Sws
and the between-subcluster scatter matrix

Sbs
are equally weighted so that h-LDA becomes equiv-

alent to LDA by Eq. (5), which shows the equivalence

of the within-cluster scatter matrices between Figure

1(c)-(i) and 1(c)-(ii). Hence, h-LDA can be viewed as a

generalization of LDA, and the parameter α can be cho-

sen by parameter optimization schemes such as cross-

validation in order to attain maximum classification per-

formance. Considering the motivation of h-LDA, atten-

tion should be paid to the case of 0.5 < α ≃ 1 since this

can mitigate the unimodal Gaussian assumption weak-

ness of the classical LDA, which can produce a trans-

formation that projects the points in one cluster onto

essentially one point in the reduced dimensional space.

4 h-LDA with Regularization (h-RLDA)

Both h-LDA and LDA take into account only the

estimates of the first and the second order statistics of

the data, and the quality of these estimates relies on the

number of data items. As the number of data items in-

creases, the estimators have smaller variances or devia-

tions from the true underlying statistics. In this sense,

the potential problem in h-LDA is that the estimates of

Sws
and Sbs

may not be as confident as that of Sb due

to further splitting of the data into subclusters. In order

to compensate such a problem, we suggest introducing

a regularization term to Sh
w in Eqs. (6) and in (7) as

Sh
w + γI = αSws

+ (1 − α)Sbs
+ γI, (8)

L1(G, γ) = trace((GT (Sh
w + γI)G)−1(GT SbG)).

(9)

which enables us to avoid the complete dependency on

the small sample size of subclusters by controlling the

value of γ > 0. The criterion to maximize Eq. (9) is a

regularized form of h-LDA, which we call h-RLDA.

5 Experiments

5.1 Experimental Setup

Our implementation for h-RLDA is based on the

generalized SVD framework with efficient QR decom-

position by using Eq. (8) as the within-cluster scatter

matrix. For more details, see Algorithm 3. LDA/QR-

regGSVD in [4]. We have applied h-RLDA to a

face recognition problem using Shimon Edelman’s face

database1. This data set contains 27 persons’ images

where the images vary depending on several factors

such as angles of view, illuminations, and facial ex-

pressions. We resized the original 512 × 352 pixel im-

ages to 64 × 44 pixel images, and converted it into a

1-dimensional array by stacking up the columns. Each

image was given a set of labels that contain person

id, angle of view, illumination, and facial expression.

Throughout our experiments, the person id is our tar-

get label to estimate, and each of other labels was used

as the factor that forms subclasses within each person’s

images. The proposed h-RLDA is compared to PCA

and LDA/GSVD [3], and tensorFaces [5]. The first

two methods use only person id, but tensorFaces uti-

lizes other subcluster information than person id as in

h-RLDA.

The details of our experimental procedure are as fol-

lows: First, the training samples used to build up the di-

mension reducing matrix are determined depending on

particular label set. For instance, among all the avail-

able angles in the data, {0◦,±17◦,±34◦}, the images

from the selected angles {0◦,±34◦} are used as a train-

ing set and the rest are reserved as a test set to measure

the recognition accuracy. Next, the dimension reducing

matrix made with such training samples is applied to all

of the data, and we perform K-nearest neighbor classi-

fication on the test set, where K = 1. As a performance

measure, we present recognition accuracies.

For h-RLDA, the parameters α (0 ≤ α ≤ 1) and γ

in Eq. (9) were optimized using k-fold cross-validation

with step size of 0.1 for α, and 2−i, i = 1, 2, · · · , 30 for

γ, respectively. In the case of multiple pairs of values

of α and γ produced the best cross-validation accuracy,

we chose the smallest value for γ and then the largest

for α.

1ftp://ftp.wisdom.weizmann.ac.il/pub/facebase



Table 1. Comparison data of recognition accuracies(%)
Training/Test Data PCA LDA tensorFaces h-RLDA

Data 1
Training : 3 angles of view(0◦, ±34◦), 4 illuminations, 3 facial expressions

Test : 2 other angles of view(±17◦), 4 illuminations, 3 facial expressions

88.73% 96.24% 85.92% 98.59%

Data 2
Training : 5 angles of view(0◦, ±17◦ ± 34◦), 2 illuminations, 3 facial expressions

Test : 5 angles of view(0◦, ±17◦ ± 34◦), 2 other illuminations, 3 facial expressions

86.47% 97.58% 90.94% 99.82%

Data 3
Training : 1 angles of view(0◦), 4 illuminations, 2 facial expressions

Test : 1 angles of view(0◦), 4 illuminations, 1 other facial expression

87.15% 98.34% 89.42% 100%

Tucker decomposition in Matlab Tensor Toolbox2

was used for tensorFaces algorithm.

5.2 Results

For three different training/test sets, the recognition

accuracies of PCA, LDA, tensorFaces, and h-RLDA are

shown in Table 1. In all cases, h-RLDA shows consis-

tently better performances than any other methods. An-

other interesting observation is that the tensorFaces did

not outperform PCA as clearly as was reported in [5],

and it did not perform as well as LDA although it uti-

lized more information than LDA.

Figure 2 shows the recognition accuracies versus

subspace dimensions using Data 1 shown in Table 1.

LDA and h-RLDA allow the maximum reduced dimen-

sion of p − 1 where p is the number of different peo-

ple, and PCA allows the maximum reduced dimension

which is the same as the total number of training images

unless it exceeds the original dimension. This experi-

ment shows the recognition results when we use only a

subset of fully extracted features. Reduced space of di-

mension d was obtained from the d leading eigenvectors

and generalized singular vectors of PCA and LDA/h-

RLDA respectively. From Figure 2, we can observe that

h-RLDA reaches its maximum performance very fast

even with only about 10 features whereas LDA requires

almost the full reduced dimensional space of rank p− 1
to produce its best performance, which means the ex-

tracted feature quality of h-RLDA can be much better

than that of LDA.

6 Conclusions

To remedy the drawback of LDA that assumes a

unimodal Gaussian model in each cluster, hierarchical

LDA was introduced by enhancing the within-cluster

scatter matrices using additional information available

from the data. Combined with regularization and re-

cently proposed regularized LDA algorithm, the idea of

hierarchical LDA showed superior performances over

other methods such as PCA, LDA, and tensorFaces.

2http://csmr.ca.sandia.gov/˜tgkolda/TensorToolbox/

Figure 2. Recognition accuracies versus

subspace dimensionality of Data 1 in Ta-

ble 1
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