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Abstract

This paper proposes an extension to the active con-

tour algorithm for the detection of linear patterns

within remote sensing and vibration data. The proposed

technique uses an alternative energy force, overcom-

ing the limitations of the original algorithm, which re-

lies upon simple energy formulations to extract intensity

and gradient information from an image. We overcome

these by forming a noise model, which is used to detect a

feature’s presence, and by integrating information from

several locations within an image to strengthen the de-

tection process.

1. Introduction

The active contour model proposed by Kass et al. [7]

allows for non-parametric feature detection within an

image. The active contour is constrained by internal en-

ergy forces, which ensure that the active contour’s shape

follows certain criteria; these are typically defined as

curvature and connectivity. It is guided by an external

energy force which attracts the active contour towards

features by following local changes in energy gradient.

As these gradients are calculated on a local basis the ac-

tive contour needs to be initialised close to the desired

feature to ensure a correct convergence. To overcome

this Cohen [3] proposes a force which expands a closed

active contour until it reaches the boundary from any

initial position within it, called the balloon force. Al-

ternatively points of the boundary may be selected prior

to the contour’s evolution [4]. The active contour con-

verges on a minimum of the weighted combination of its

internal and external energy constraints which, subject

to the internal constraints, translates to a local gradient

maximum in the image. The active contour thus detects

features which are distinguishable by gradient. This

technique has proved valuable in the area of medical

imaging, specifically; cortex [5] and calcaneus bound-

ary detection [8] and brain segmentation [9].

The original algorithm has a single contour, is depen-

dent on gradient features and is sensitive to the initial

location. Here we present an active contour model for

the detection of features in remote sensing and vibration

data. For this application we derive a novel external en-

ergy constraint which allows the model to detect very

weak structures not defined by gradient and introduce

an additional energy term which overcomes the initiali-

sation problem.

This paper is laid out as follows: in Section 2 the

original active contour algorithm is outlined and our

novel contributions are defined. In Section 3 experi-

mental results are presented and discussed. Finally, in

Section 4, our conclusions are drawn.

2. Method

2.1. The Active Contour Algorithm

The original active contour model, as proposed by

Kass et al. [7], is as follows. A set of snake points,

v(s) = (x(s), y(s)), s = 0, 1, . . . , n − 1, forms a

deformable contour where x(s) and y(s) are the contour

point’s position in the image such that x(s) ∈ [0, xmax]
and y(s) ∈ [0, ymax]. The contour has the energy
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(1)

where the terms α and β control the continuity and cur-

vature of the contour (respectively) and the term P cor-

responds to the external energy derived from the image.

The external energy force, P , attracts the contours to

edges in the image. In the original algorithm these are

taken to be the image intensity or gradient (2).

P(v(s)) = −|∇I(v(s))|
2

(2)

2.2. Active Contour for Pattern Detection

For the detection of features in the proposed domain

there are two issues limiting the active contour’s appli-

978-1-4244-2175-6/08/$25.00 ©2008 IEEE



(a) (b)

Figure 1. (a) A low SNR image. (b) Canny

edge detection.

cation: its sensitivity to initialisation and the assump-

tion that features are defined by gradient.

2.2.1. Initialisation. To overcome the initialisation

problem, a similar force to Cohen’s balloon force is

used. We define an external force which ‘walks’ the

contour in a horizontal direction across the x-axis. The

force is given by

W(v(s)) = −x(s)c (3)

where c is a constant which is balanced to overcome

noise introduced by the external energy while not forc-

ing the contour to miss true detections. The contour will

encounter vertical features during its walk.

2.2.2. External Energy Force. In this application,

gradient and image intensity information are not suf-

ficient to define features. As illustrated in Fig. 1, in

very noisy images which contain weak features, using

the Canny [2] filter produces spurious edge detections

and fails to detect features. It can also be seen in a his-

togram of intensity values for a 3dB SNR image, Fig.

2, that the noise and signal classes overlap consider-

ably. We form an energy term which is based upon pixel

intensity values contained within a window W (x, y)
(and therefore incorporating spatial information). The

window vector is then projected onto basis vectors de-

rived through Principal Component Analysis (PCA) to

remove noise and to reduce the dimensionality (avoid-

ing the ‘curse of dimensionality’ [1]) of the data. We

create a noise model by fitting a Gaussian distribution

to examples of noise which is used to form a measure of

windows’ content. This measure is formulated to take

a maximum value when the window contains a pattern

section and a minimum value otherwise.

The feature vector x is defined as a linear arrange-

ment of pixel values from a window W (x, y) centred

on pixel (x, y) of the image I . n is the height and m the

width of the window. A training set X of nm columns

is formed which includes an equal number of examples
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Figure 2. Histogram of pixel intensity val-

ues for the signal and noise classes in a

3dB SNR image.

from windows containing a feature and those contain-

ing only noise. The principal component vectors uk,

are found by maximising the quantity λk as follows

λk =
1

n

n
∑

i=1

(uT
k (xi − x̄))2

where x̄ is the mean vector of X , subject to the orthog-

onality constraint

uT
l Uk = δlk

A subset, U , is selected as the first d principal compo-

nents and the training data projected onto them to form

X̂ .

U = [u1, . . . ,ud] (4)

X̂ = UT X

By storing U , window vectors derived as the active con-

tour evolves can be projected into the same PCA space.

A plot of a data set X̂ containing noise and signal ex-

amples with a SNR of 3, 6 and 9dB projected onto the

first 2 principal components can be seen in Fig. 3. It

shows that this method results in clear separation of the

noise and signal classes and a representation in which

the noise can be easily modelled using a Gaussian distri-

bution. Also, an increase in SNR translates to increased

distance from the noise class. The three pronged fan

structure that is observed results from windowing.

The parameters for a multivariate Gaussian distribu-

tion, µ and Σ, are selected to fit the noise examples

present in X̂ .

G(v(s)) =
1

(2π)
d

2 |Σ|
1

2

exp[− 1

2
(Q)T

Σ
−1(Q)] (5)

Q = UT W (v(s)) − µ

where UT are the principal components derived in (4),

W (v(s)) is the vector of pixel values from a window

centred on contour point v(s) and µ and Σ are the mean

and standard deviation of the PCA projected noise vec-

tors. A subset of X̂ which contains only noise vectors
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Figure 3. Windowed feature vectors pro-

jected onto 2 principal components (win-

dow size: 21 x 3 pixels).

will be defined as X̂
n
⊂ X̂ , therefore µ and Σ can be

calculated using the maximum likelihood estimators [6]

µ =
1

n

n
∑

i=1

x̂
n
i (6)

Σ =
1

n

n
∑

i=1

(x̂n
i − µ)(x̂n

i − µ)T (7)

where ∀x̂
n ∈ X̂

n
is a vector containing noise. The

contours of a 2D Gaussian distribution fitted to the noise

class are shown in Fig. 3.

We use a single Gaussian distribution to model the

noise and anything at the distribution’s extreme is clas-

sified as signal. This is useful as the characteristics of

the feature can vary greatly but the noise is consistent.

Now P in eq. (1) can be rewritten to use the Gaus-

sian’s response to a novel window as an external energy

force.

p(v(s)) =

{

1 if G(v(s)) ≥ t

G(v(s)) if G(v(s)) < t

The purpose of the threshold t is to smooth the back-

ground noise in the active contour’s search space; thus

simplifying the detection problem.

Incorporating a priori information regarding a pat-

tern set Ps (composed of relative positions of a pattern),

can improve detection rates and form a pattern-based

active contour search. As track patterns can be related

through some underlying relationship, window sam-

ples, and their Gaussian response, can be taken from

locations relative to the contour point’s position in the

Figure 4. Ground truth image templates

for a straight pattern section (top) and a

sloped pattern section (bottom).

x-axis (for vertical lines) as defined in a pattern set Ps.

P(v(s)) = W(v(s)) +
γ

N + 1
(p(v(s))

+
N

∑

n=1

p(fqnx(s), y(s))) (8)

Where W(v(s)) is the walk force (3), p(v(s)) is the

external energy calculated at the true contour position,

p(fqnx(s), y(s)) is the external energy calculated at the

nth relative position ∀fqn ∈ Ps and N is the cardinal-

ity of the pattern set Ps. Averaging over a pattern set

results in the flattening of noise spikes and the reduction

of responses from all but the first feature in the pattern

set; reducing the risk of multiple detections of a pattern.

We are looking for vertical, curvilinear features, so

the first and last points of the contour are fixed to the

top and bottom of the image such that v(0) = [x(s), υ]
and v(n−1) = [x(s), ymax−υ]. Movement of contour

points will be restricted to the x-axis to ensure that an

even search takes place in this direction. Using the pro-

posed energy term and model the contour can now be

thought of as a ’mesh’ which stretches across the im-

age, similar to a flexible correlation template.

3. Experimental Results

The experiments outlined in this section use

images containing the same linear pattern set

(Ps = {2, 3, 4, 5}) with SNRs ranging from 0

to 10dB. Ground truth templates for the images are

shown in Fig. 4.

3.1. Parameter Selection

To enable the contour to perform its detection using

the maximum amount of information derived from the



image the external energy weight, γ, is set to γ = 1.

The internal energy parameters α and β are set to α =
0.1 and β = 0.2 to allow the contour sufficient freedom

to model variations within the pattern.

A training set containing 1000 examples of noise and

1000 examples of 0dB mean SNR signal and noise was

formed from 21 x 3 pixel windows. In this way the

principal components represent the direction of maxi-

mum variance for windows containing 0dB tracks and

therefore SNRs greater than 0dB will be better sepa-

rated from the noise. It was found through eigenvalue

analysis that 2 principal components capture the ma-

jority of the data’s variance. The parameters t and c

are set to t = 0.00008 and c = 0.41; values deter-

mined through experimentation. A model for determin-

ing these parameters will be published in future work.

3.2. Results

The proposed algorithm correctly detects > 92% of

straight line patterns in images containing a mean SNR

of 1.5dB or above, see Fig. 5 (top). It can also be seen

that below a mean SNR of 1.5dB the detection process

gradually degrades until at a mean SNR of 0dB none

of the pattern is detected. This clearly indicates that

the class distributions, as used by the external energy

term, become less distinguished at lower SNRs. Sloped

patterns are detected at a rate of > 90% up until the

mean SNR is reduced to 3dB, at which point the per-

formance reduces in a roughly linear fashion to 0% at

0.5dB. It can be expected that sloped patterns are not de-

tected as reliably as straight patterns because, currently,

the external energy is specifically trained using vertical,

straight, patterns.

It can be observed that the presented algorithm pro-

vides very good localisation results; at all SNRs, when

a pattern is detected it is, on average, within 1 pixel of

the true location, see Fig. 5 (bottom). It should also

be mentioned that given that the noise is correctly mod-

elled during the training process no false positives are

detected.

4. Conclusion

We have presented an active contour framework, in-

cluding a novel external energy term, with application

to remote sensing and vibration data. The contributions

of our model are: its use of a priori information re-

garding pattern structure to enhance detection, the novel

external energy term and its ability to detect structure

which can vary greatly. As the results indicate, combin-

ing these contributions allows for structure detection at

low SNRs.
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Figure 5. Proportion of patterns detected

with less than 5 pixels difference at vary-

ing levels of mean SNR (top). Mean dis-

tance from the true location of the de-

tected patterns (bottom).
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