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Abstract

Recently, there is a growing interest in automatic
recognition of human motion for applications, such
as humanoid robots, human activity monitoring, and
surveillance. In this paper we investigate motion recog-
nition based on joint angle trajectories derived from
marker-based video recordings. The goal of this pa-
per is to improve the generalization and robustness of
human motion recognition even if only limited amount
of training data is available. We achieve this goal by
significantly reducing the amount of input features. We
leverage on recent studies in the area of neuroscience
which indicate that human motions display only a few
independent degrees of freedom (DOF). We examine
which DOF are relevant for recognizing upper body hu-
man motions and to what extend the dimensionality of
the feature vectors can be reduced in order to simplify
the data acquisition and improve the robustness of the
recognition process. Our final results indicate that care-
ful selection of features proves to reduce the number of
features by a factor of up to 3, while at the same time
significantly improving the recognition performance.

1. Introduction

In the last years the interest in automatic recogni-
tion of human motion, e. g. in humanoid robot research
has increased significantly. The overview article by Ag-
garwal and Park [2] describes the large variety of ap-
proaches, ranging from statistical modeling techniques
such as Hidden Markov Models (HMMs) [8, 9] to bio-
logically motivated recognizers [10]. Recently, research
in neuroscience uncovers the process of motion gener-
ation in humans and animals, and indicates that human
motions have only a few independent Degrees Of Free-
dom (DOF) and that synergies are used to handle the
complexity of motions [5]. Park [6] applies these syn-
ergies in her approach for modeling human motion.

2. Human Motion Recognition

In this paper we study human motion recognition
based on joint angle trajectories derived from marker-
based video recordings. We describe how to select the
most relevant features for upper body motion recogni-
tion. For feature selection we investigate various feature
selection methods, and compare the resulting features
based on recognition accuracy.

2.1 Scenario

We focus on human motions as they appear in a
kitchen and food preparation scenario of CRC 588! [1],
such as placing objects and pouring fluid into container
and discriminate the following 10 motion sequences:
rolling pastry (M1), pouring water (M2), planing apple
(M3), grinding coffee (M4), sweeping (M5), grating ap-
ple (M6), stiring (M7), cutting cake (M8), cutting apple
(M9), and pitching (M10). Each motion is described in
terms of a sequence of motion units, such as fetching,
maneuvering, and placing back an object. Many mo-
tions share the same motion units.

Human subjects were asked to perform these mo-
tions in a controlled setting (see Fig. 1). The objects
were placed at fixed positions on the table. The subject
stands at the table in a neutral position, i.e. both hands
resting on the table. Starting from this neutral position
the subject executes a predefined sequence of motion
units, e. g. fetching an empty glas, fetching a bottle of
water, pouring water into the glas, and putting both ob-
jects back. In between the motion units, the subject is
going into neutral position.

2.2 Body Model

For reconstructing the motion data we use a human
body model. We use a rigid upper body multibody
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Figure 1. The data flow from data aquisition via preprocessing to feature selection.

model of the human skeleton with 24 DOF to approxi-
mate human motion. The joints are wrist (2 DOF), el-
bow (2 DOF) and shoulder (3 DOF) of both arms as well
as joints at the lower (neck: 2 DOF) and upper (skull:
3 DOF) neck, and at the lower (lumbar: 2 DOF) and
upper (thorax: 3 DOF) spine. The according DOF for
wrist are for example wrist flexion and deviation. The
joint angles of the 24 DOF are used as input features for
our motion recognition system.

2.3 Motion Model

To recognize human motions, the feature vectors are
fed into a 3-state left-to-right Hidden Markov Model
which represents a motion unit. The three states de-
scribe the initial, middle, and final part of the motion
unit. Each human motion is modeled as a concatenation
of these motion units. In our experiments we discrim-
inate 10 human motions as described above, consisting
of 49 different motion units in total.

2.4 Data Acquisition

To capture the human motions, we attach reflecting
markers to the subject’s upper body, head and arms. Re-
flecting infra red light is simultaneously recorded with
10 Vicon cameras, which are arranged around the table.
The Vicon system outputs 3-dimensional positions and
labels of the markers. The resulting marker trajectories
are used as input to an optimization-based motion map-
ping. This motion mapping determines the parameters
of the kinematic model and calculates the related joint
angle trajectories based on the kinematic body model
by minimizing the distances between the marker posi-
tions in space and the body model. As a result, the mo-
tion mapping outputs per time step one feature vector
consisting of the 24 joint angles of the kinematic body
model.

2.5 Baseline Motion Recognition System

Our human motion recognition system features the
one pass IBIS decoder [7], which is part of the Janus
Recognition Toolkit (JRTk) [3]. For HMM motion unit
model training we used about 600 recordings of human
motions from a single subject. For model bootstrap-
ping, we manually segmented about two thirds of these
data into motion units. Each state of the motion unit
left-to-right HMM has two equally likely transitions,
one to the current state, and one to the next state. The
emission probabilities are modeled by Gaussian mix-
tures, initialized by the K-Means algorithm based on
the manually segmented data. The 24-dimensional fea-
ture vectors are normalized by subtracting the mean and
normalizing the standard deviation to 1. HMM training
was performed based on the standard forward-backward
EM algorithm.

Two subsets of about 50 human motions each were
held out as development (dev data) and test data, respec-
tively. Recognition performance is reported throughout
the paper in terms of motion unit recognition accuracy.
Decoding was carried out as a time-synchronous beam
search guided by a bigram model with a perplexity of
2.6 which describes the probabilities of two consecu-
tive motion units. Large beams were applied to avoid
pruning errors. This baseline system achieves 85.1 %
recognition accuracy on the 49 motion units.

3. Experiments

The goal of our experiments is the selection of rele-
vant features for recognizing human upper body move-
ments in a kitchen environment. For the selection
we implemented three methods, brute-force feature se-
lection (BFS), sequential forward selection (SFS), and
LDA-based feature selection (LDA). The three methods
are compared using motion recognition accuracy.



3.1 Brute-Force Feature Selection (BFS)

We started the BFS method by investigating combi-
nations of joints (see Fig. 1). When a joint was selected,
each of its DOF was taken into consideration. Second,
we refined our selection procedure by allowing combi-
nations of DOF independent of the joints.

3.1.1 Selection by Joints

In this experiment, we trained a recognizer for each of
the 1023 combinations possible with our 10 joints. This
means we used feature vectors consisting of all DOF
belonging to the selected joints.

The best recognition accuracy of 90.9 % was
achieved when using right shoulder, right elbow, right
wrist, and left elbow. The total amount of features was
such reduced by a factor of roughly 3, outperforming
the baseline system by 7 % (relative) on the dev data.

We examined the top 10 % of joint combinations.
The two joints neck and skull seemed to be the least
relevant for the recognition performance. Therefore, we
discarded the worst joint (skull) in the following DOF
experiments. Although the numbers indicated that the
left shoulder might be less crucial as well, we did not
remove this joint for generality reasons, as its relevance
might depend on the handedness of the subject.

3.1.2 Selection by DOF

This experiment is based on the selection of individual
DOF instead of the combination of DOF as predefined
by the joints. Since this selection scheme allows for
higher granularity, the results should provide better in-
sights to which features are relevant for motion recog-
nition performance. Since a motion can be performed
either with the left or the right hand, we coupled the
DOF of both arms such that the same DOF would be
selected. For example, either the flexion for both, left
and right arm, is included into the feature set, or both
are discarded.

The large number of combinations is handled by sep-
arating the feature sets into two categories, a set of
arm features and a set of spinal column and neck fea-
tures. First, we examined all possible 127 combinations
within the arm feature set while using all spine&neck
features. Second, we examined the 127 combinations
of arm features without using any spine&neck features.
Then the same was done vice versa.

As can be seen in Table 1, the arm features outper-
form the spine&neck features. This is not too surprising
given that the 10 human motions all focus on managing
objects. However, it raises the question if additional

selecting feature of | all features of | accuracy
spine&neck arms 90.9 %
spine&neck no arms 75.2 %
arms spine&neck 88.2 %
arms no spine&neck | 90.4 %

Table 1. Recognition accuracys for the
DOF selection experiment

spine&neck features on top of arm features could im-
prove the recognition performance. We ranked the fea-
tures according to frequency in the best 10 % of feature
set combinations. Since the arm features are more im-
portant, we took the best five arm features and the best
four spine&neck features and investigated all possible
combinations. The best performance on the dev data
was 92.5 % using thorax yaw, arm adduction, arm ro-
tation, elbow flexion, and wrist flexion. To validate the
result, we used the same DOF on the test data and got a
recognition accuracy of 89.3 %, which is 5 % above the
baseline system. The reduction to these nine features
corresponds to a reduction factor of almost 3. As can be
seen in Figure 3 the recognition accuracy has improved
for almost all motion sequences. In total only 4 features
are suffient to achieve the same accuracy as the baseline
system (see Fig. 2).

Recognition Accuracy

baseline

651 —w— SFS i

—O— LDA-based

—&— Brute Force

. . . :

5 10 15 20 25
# Features

Figure 2. Performances over number of
features for all selection methods

3.2 Sequential Forward Selection (SFS)

In this experiment we selected features based on
sequential forward selection.  Starting from a 1-
dimensional feature vector (single DOF) we iteratively
added one feature at a time in a greedy fashion until
all 24 features were included. As criteria for adding a
feature we used the recognition performance on the dev
data. The test data was used for final evaluation. About
600 feature combinations were tested.

According to our results three features are already
enough to outperform the baseline accuracy. The high-
est recognition accuracy was obtained with the follow-



ing 13 features: right shoulder (3 DOF) and supination
(1 DOF), elbow flexion and wrist of both arms (6 DOF),
thorax (2 DOF), and skull yaw (1 DOF). With these fea-
tures we got a performance of 91.3% on the test data. As
can be seen in Figure 3, the recognition results for most
motion sequences are better than the baseline system.

3.3 LDA-based Feature Selection

We calculated a Linear Discriminant Analysis
(LDA) [4] on training and dev data. The path align-
ments for the LDA were computed using a recognizer
trained on the training data and initialized using the se-
quences of the training data, that have been manually
segmented. We compared the LDA calculation based
on two units, motion unit and HMM state and found that
state-based LDA calculation achieves better results.

The best recognition accuracy has been achieved for
16 features of the LDA-transformed feature vector. Un-
fortunately the recognition accuracy of 81.8 % is be-
low that of the baseline system. The LDA selection
method improves over the baseline in only two human
motion categories, “apple planing” and “apple grat-
ing”. Maybe these two highly confusable motions ben-
efit from the discriminative nature of the LDA feature
selection method.
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Figure 3. Breakdown of average perfor-
mance for each motion using the opti-
mized feature set per selection method

3.4 Comparison

Among the three feature selection methods, the BFS
needs the most computation time and the LDA-based
selection needs the least. While BFS relies on human
expertise, SFS and LDA-based selection are solely data-
based procedures. BFS and SFS both outperform the
baseline system. While BFS is best on the dev data,
SES is best on the test data. Both selected almost the
same features since all DOF that were used for the best
BFS result are also part of the feature set for the best
SES.

4. Conclusion and Future Work

We investigated three methods for selecting relevant
features for human motion recognition. BFS and SFS
resulted in a significant increase of the recognition per-
formance while reducing the number of DOF by a fac-
tor up to 3. In contrast, recognition performance of the
LDA-based selection droped to about 82%, albeit the
fastest method. The results indicate that joint angles of
the arms, especially the dominant one, are more relevant
than spine&neck in our scenario. The selections led to
an increase in motion unit recognition rate from 85.1 %
to over 90 %. Using a context free motion grammar we
got a motion sequence recognition rate of 100 % (SFS).

For the future it might be interesting to investigate
what distinguishes the relevant features from the ones
that have been discarded in the experiments. The bad
performance of some joint angles might be due to the
joint itself and its importance for the motions. It might
also be due to the feature extraction process, e.g. the
optimization stability of the joint angle calculation for
the particular joint.
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