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Abstract

Many computer vision algorithms make use of local
features, and rely on a systematic comparison of these
features. The chosen dissimilarity measure is of crucial
importance for the overall performances of these algo-
rithms and has to be both robust and computationally
efficient.

Some of the most popular local features (like
SIFT [4] descriptors) are based on one-dimensional
circular histograms. In this contribution, we present
an adaptation of the Earth Mover’s Distance to one-
dimensional circular histograms. This distance, that we
call CEMD, is used to compare SIFT-like descriptors.
Experiments over a large database of 3 million descrip-
tors show that CEMD outperforms classical bin-to-bin
distances, while having reasonable time complexity.

1. Introduction

Many computer vision applications rely on the com-
parison of local features between images. For instance,
object pose estimation [4], image stitching [2] or image
classification [9] are quite often based on either descrip-
tor matching or clustering. In a comparative study [5],
SIFT-like descriptors [4] have proven to be the most ef-
fective and robust methods for image matching. Such
descriptors consist of several histograms of gradient ori-
entation, and the comparison of two descriptors boils
down to the comparison of one-dimensional circular1

histograms. Observe that many other features based on
one-dimensional circular histograms can be found in the
literature, such as hue histograms [7].

In practice, “bin-to-bin” distances, like the Euclidean
distance [4, 5] or the χ2 distance [1, 9], are considered
as the simplest way to measure quickly the dissimilar-
ity between two histograms at a low computational cost.

1Circular means that the first and the last bins of the histogram are
neighbors.

However, these distances are obviously not robust to
histogram quantization. Therefore, the number of bins
of gradient orientation histograms for original SIFTs [4]
is limited to N = 8 to make a compromise between the
discriminative power of the descriptor and the robust-
ness of the representation.

This quantization problem can be avoided by using
cross-bin distances, such as the Earth Mover’s Distance,
initially proposed by Rubner [6] as a metric for multi-
dimensional histograms. This distance, often used to
compare image signatures, is known to be more ro-
bust than bin-to-bin distances, but is computationally
far more expensive. A nice variant of this distance is
proposed in [3] by Ling et al. in order to speed up the
comparison. However, this measure remains too expen-
sive to be applied to the matching problem when the
number of features increases (see Section 3) and does
not address the circularity of orientation histograms.

These limitations led us to propose a new dissimi-
larity measure, called CEMD, specifically designed to
compare one-dimensional circular histograms (see Sec-
tion 2). This measure, based on the Earth Mover’s
Distance (as a solution of a transportation problem), is
computationally efficient. We show in Section 4 that it
behaves well with respect to histogram quantization and
outperforms classical bin-to-bin distances for the com-
parison of SIFT-like features.

2. Circular Earth Mover’s Distance (CEMD)

Let f = (f [i])i=1...N and g = (g[i])i=1...N be two
discrete histograms with samples on N bins and nor-
malized, in the sense that

∑N
i=1 f [i] =

∑N
i=1 g[i] = 1.

The Earth Mover’s Distance between f and g is defined
in [6] as

EMD(f, g) := min
(αi,j)∈M

N∑
i=1

N∑
j=1

αi,jc(i, j), (1)



where M = {(αi,j); αi,j ≥ 0,
∑

j αi,j =
f [i],

∑
i αi,j = g[j]} and where c(., .) is a ground dis-

tance between bins.
The distance EMD(f, g) can be understood as a trans-

portation cost. The value c(i, j) measures the cost of
moving a unit mass from bin i to bin j, and αi,j is the
amount of mass carried from i to j. This definition can
be used in any dimension, but histograms of dimension
larger than 2 involve heavy computations.

For non-circular and one-dimensional histograms, if
c(i, j) = |i − j|/N , it is known [8] that EMD(f, g)
equals 1

N

∑N
i=1 |F [i] − G[i]|, where F and G are

the cumulative histograms of f and g. The general-
ization of this formula to circular histograms is not
straightforward (remark that in this case c(i, j) =
min{|i− j|/N , 1− |i− j|/N}). Observe in particu-
lar that if f is a circular histogram, one can build as
many cumulative histograms as there are bins in f (any
bin can be chosen as a starting point). However, if f
and g are circular and one-dimensional, it can be shown
(the proof of this result is omitted in this paper for lack
of space) that the Earth Mover’s Distance between them
equals

CEMD(f, g) = min
k∈{1,...,N}

{
1
N

N∑
i=1

|Fk[i]−Gk[i] |

}
,

(2)
where, ∀ k ∈ {1, . . . , N} (the definition is similar for
Gk by replacing f by g),

Fk[i] =



i∑
j=k

f [j] if i ≥ k

N∑
j=k

f [j] +
i∑

j=1

f [j] if i < k

.

This means that the distance CEMD(f, g) is the mini-
mum in k of the L1 distance between Fk and Gk, the
cumulative histograms of f and g starting at the kth

quantization bin.

3 Comparing local features

In this section, we first briefly recall the classical way
to compare SIFT-like features by using bin-to-bin dis-
tances, and then explain how to apply the CEMD intro-
duced in the previous section to the comparison of such
local features.

Let us recall [4, 5] that a SIFT-like descriptor a con-
sists of M circular histograms am of gradient orien-
tations, weighted by the gradient magnitude and com-
puted for different subregions of a location grid around

an interest point. Thus, the comparison of two des-
criptors a and b boils down to the comparison of his-
tograms am and bm. We suppose here that each his-
togram is quantized to N bins and that the whole des-
criptor a = (a1, . . . , aM ) is normalized to have unit
weight [4].

Bin-to-bin distances The most classical way to com-
pare SIFT-like descriptors is simply to use the Lp dis-
tance as in Formula (3), usually with p = 2 (Euclidean
distance) [4]. Applying this distance requires a global
Lp normalization of descriptors a and b. Other bin-to-
bin distances that are used to compare local features in-
clude the χ2 distance, as in [9] or the Jeffrey divergence.
The definitions of these distances in the framework of
SIFT-like descriptors are recalled in Formula (4) and (5)
respectively.

DLp(a, b) :=

(
M∑

m=1

N∑
i=1

| am[i]− bm[i] |p
) 1

p

(3)

Dχ2(a, b) :=
M∑

m=1

N∑
i=1

(am[i]− bm[i])2

am[i] + bm[i]
(4)

DJ(a, b) :=
M∑

m=1

N∑
i=1

am[i] log
(

2 am[i]
am[i] + bm[i]

)
+ bm[i] log

(
2 bm[i]

am[i] + bm[i]

)
(5)

Applying CEMD to local features In order to apply
CEMD to SIFT-like features, Formula (2), designed to
compare normalized histograms, should be applied to
the comparison of each histogram pair am and bm. In
practice, however, it is by far more robust to glob-
ally normalize SIFT-like features to unit weight (as
in [4]) than to normalize each histogram am indi-
vidually. Therefore, Formula (2) is applied to non-
normalized histograms.

In order to combine distances corresponding to dif-
ferent subregions (different values of m) we choose to
use the following distance between two descriptors,

DCEMD(a, b) :=
M∑

m=1

CEMD(am, bm). (6)

Other dissimilarity measures could have been chosen
(such as

∑
CEMD(am, bm)2 or max CEMD(am, bm)).

However, we observed experimentally that the dis-
tance (6) is more robust.



Implementation and computational cost Let
Xk[i] = Fk[i] − Gk[i] be the difference of the cumu-
lative histograms computed in Formula (2). Xk can
be written as a function of X1 (with the convention
X1[0] = 0), ∀ k ∈ {1, . . . , N}

Xk[i] =
{

X1[i]−X1[k − 1] if i > k > 1
X1[i]−X1[k − 1] + X1[N ] if i < k

Observe that X1[N ] = 0 when f and g are two nor-
malized histograms. Thus, CEMD only necessitates the
computation of histograms F1 and G1 (just like EMD in
the non-circular case), and the minimization of ‖Xk‖1

according to k. The complexity of the CEMD computa-
tion is therefore approximately N times the complexity
of the Euclidean distance computation, where N is the
number of bins of each local histogram (N = 8 for clas-
sical SIFT).

Ling and Okada in [3] proposed a faster implemen-
tation of EMD, called EMD-L1, with the L1 ground dis-
tance in the multidimensional case. In one of their ex-
periments, EMD-L1 is used to compare SIFT descrip-
tors, considered as 3-dimensional histograms (coding
both orientation and localization). However, they do not
address the circular aspect of orientation histograms.
Moreover, this distance remains empirically too expen-
sive to be applied to large descriptors databases: com-
puting EMD-L1 is empirically 720 times slower than the
Euclidean distance, according to Table VII in [3]. As an
order of magnitude, performing the same evaluation as
in Section 4 with EMD-L1 would require more than one
year on a standard 2.5 GHz computer.

4. Experiments

This section compares the performances of the dif-
ferent distances defined in Section 3, when used for the
matching of SIFT-like descriptors. These descriptors
are obtained in a way similar to the original SIFT [4],
except that they are extracted from circular masks di-
vided in M = 9 subregions. In order to estimate the
robustness of the distances to histogram quantization,
each circular histogram is computed twice, first with
N = 8 then with N = 12.

Figure 1. Example of affine original image A
(left) and its affine transform A′ (right).

The performances of the different distances are com-
pared on a set of 732 images2 and 3.1 million descrip-
tors. Each image A of the database is compared to an
image A′, obtained by applying an affine transform (see
Figure 1) and adding Gaussian noise (with σ = 5 for 8-
bit coded images) to A. Since our purpose is to compare
distances, and since each descriptor a of A should have
at most one correct match in A′, we choose the simplest
criterion to match descriptors: a query descriptor a of A
is matched with its nearest neighbor a′ in A′ if D(a, a′)
is smaller than a threshold τ .

Figure 2. Example of three images and ROC
curves from the 732 image database. The red
curve corresponds to CEMD, the blue one to the
L1 distance and the green one to the L2 distance.

Now, a match is declared false (i.e. false positive)
or correct (i.e. true positive) depending on some spatial
tolerance (following exactly the same protocol as in [5])
on the relative position of a and a′. For each image A of
the database and for each distance D, we obtain a ROC
curve showing the ratio of correct matches as a function
of the ratio of false matches for different values of the
threshold τ on the dissimilarity measure D. More pre-
cisely, the ratios of correct matches and false matches
are defined as

correct matches ratio =
#correct matches
#possible matches

,

false matches ratio =
#false matches

#total number of matches
.

Some images and associated ROC curves are shown in
Figure 2 -for the sake of clarity, only CEMD, L1 and L2

distances are represented, respectively in red, blue and
green continuous lines. We can see on these curves that
results can be quite different from one experiment to
the other. In order to compare the performances of the
different distances on the whole database, we choose
to draw average ROC curves, obtained by averaging all
732 ROC curves, weighted by the number of descriptors

2Images available at: http://www.tsi.enst.fr/~rabin/ICPR08/
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Figure 3. Average ROC curves: (on 732 images and 3.1 million descriptors) for CEMD (red), L1 (blue), L2

(green), χ2 distance (magenta) and Jeffrey divergence (black), with two different quantization steps (N = 8 for
dashed lines and N = 12 for continuous lines).

of each image. Thus, for each distance defined in Sec-
tion 3, performances are evaluated on the set of 732 im-
ages and 3.1 106 descriptors (involving approximately
25.109 descriptor comparisons).

In Fig. 3, the efficiency of the L1 and L2 distances,
Jeffrey divergence, and χ2 distance are compared with
the proposed CEMD, for two different quantization steps
(N = 8 and N = 12). The average ROC curves
clearly show the advantage of CEMD for all quantiza-
tion choices. Moreover, one observes that increasing
N systematically increases the quality of the matching
when using CEMD. The number of bins is therefore only
driven by computational complexity. This is of course
not the case for classical bin-to-bin distances, for which
using too many bins yields inefficient comparisons be-
tween histograms.

5. Conclusion

In this paper, we propose a new dissimilarity mea-
sure called CEMD between circular histograms, relying
on an adaptation of Earth Mover’s Distance to the cir-
cular case. We show, when applied to SIFT descrip-
tors, that this distance clearly outperforms other classi-
cal bin-to-bin distances on a large database, while in-
volving low time complexity.
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