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Abstract

Ears are a new biometric with major advantage in
that they appear to maintain their structure with in-
creasing age. Expanding on our previous parts-based
model, we propose a new wavelet approach. In this,
the log-Gabor filter exploits the frequency content of
the ear boundary curves. Extending our model descrip-
tion, a specific aim of the new approach is to capture
information in the ear’s outer structures. Ear biomet-
rics is also concerned with the effects of partial oc-
clusion, mostly by hair and earrings. By localization,
intuitively a wavelet can offer performance advantage
when handling occluded data. We also add a more ro-
bust matching strategy to restrict the influence of er-
roneous wavelet coefficients. Significant improvement
is observed when we combine the model and the log-
Gabor filter, and we will show that this improvement is
maintained as the ears get occluded.

1. Introduction

Ears have long been considered as a potential means
of personal identification, yet it is only in the last 10
years that machine vision researchers started to tackle
using ears as a biometric. Ears have appealing proper-
ties for personal identification: they have a rich struc-
ture that appears to be consistent with age from a few
months after birth. Clearly, ears are not affected by fa-
cial expressions. Images of ears can be acquired with-
out the subject’s participation and ears are big enough
to be captured from a distance. However there exists a
big obstacle — the potential occlusion by hair and ear-
rings, which is almost certain to happen in uncontrolled
environments.

One of the first ear biometric works was introduced
by Burge and Burger [5]. They modeled each ear with
an adjacency graph. Hurley et al. [9] used force field
feature extraction to map the ear to an energy field.
Chen et al. [6] and Yan et al. [12] exploited the 3D

structure of the ear. Though using 3D can improve
performance, using 2D images is consistent with de-
ployment in surveillance or other planar image scenar-
ios. An up-to-date survey of ear biometrics has recently
been provided by Hurley et al. [8].

Recognizing the likelihood that an ear can be oc-
cluded, in our earlier work [3], we have developed the
first model-based ear biometric method. A model is ex-
plicit in its approach to identification and it is known
for being robust in noise and occlusion. Our data-driven
model is built by detecting the clusters of SIFT points in
a training set of ear images. In the following section we
identify a potential improvement for the model, and de-
scribe how a wavelet technique can be used to exploit it.
A wavelet approach is chosen specifically to extract the
frequency content of the fluctuating surface which gives
the shapes of the Helix and the Anti-helix in an ear.
Furthermore the wavelet process is localized, meaning
that it can provide us with a maximum amount of un-
corrupted information when occlusion occurs. Prior to
applying the wavelet transform, we automatically rear-
range and align the image data into templates. We have
chosen the log-Gabor filter as our wavelet. We shall de-
scribe this wavelet and the details of the input templates
in section 3, and in keeping with the objective of han-
dling occlusion, we also add a more robust matching
strategy. The results of recognizing occluded and unoc-
cluded ear images are discussed in section 4, followed
by conclusions.

2. Improving the parts-based model

We have previously built a model for ears [3] using
a stochastic clustering on the SIFT [10] interest points
which were detected on the training images. The clus-
ters of SIFT points were described by their descrip-
tors, locations, scales and orientations. However, the
inherent disadvantage of using SIFT points is that the
model is unable to convey the information which is not
accurately captured in a SIFT descriptor. Such is the
case with boundaries and stretched curves which are not
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Figure 1. Ear anatomical parts

well captured in a circular-based area descriptor such
as SIFT, and thereby these are under-presented in the
model. Two such curves are the Helix and the Anti-
helix — the loss of which might be significant. The He-
lix is the outer ear rim and it is attached to the Anti-helix
along one side (see figure 1). However, there is also the
Scapha, which is a concave surface of free portion ly-
ing between the Anti-helix and the Helix. The Scapha
allows the Helix to have rather an independent shape
from the small curves and ridges within it. Thus the
hope of finding new and discriminant information arises
from the possibility of independence in Helix. Figure 1
shows an example of two different Scaphas.

Given an estimate of the Helix location, a wavelet
approach can be used to describe this curve. The model
parts are used to vote for the position of the Helix. A
new template is then formed by sampling the image in-
tensities along lines which are mostly normal to the He-
lix curve.

3. Approach

Wavelets can obtain the frequency content of a signal
while being localized in spatial domain. This decima-
tion in spatial domain as well as in frequency is the main
advantage of wavelets compared to the Fourier trans-
form.

3.1. Preparing the templates

Prior to applying the wavelets, we prepare aligned
templates of image data. These templates are built in
such a way to facilitate the detection of helix-related
features. The template is the sampled image intensities
in a semi-circular region which includes the Helix. The
chosen centre of this semi-circle is where the Crus of
helix curves inwards, which is almost the midpoint of
the ear height and is situated on the outermost part of
the ear, opposite to the Helix. This is detected using
some of the more reliably detected model parts which

Figure 2. Input template

vote for its position. Once the centre is determined, the
image is sampled along radial lines which sweep the ear
(see figure 2).

In this template the ridge of the Anti-helix and the
Scapha reside in the rows, and thus the columns exhibit
the variation between the ridge of the Anti-helix and
the Helix in each specific angle. Small discrepancies in
rotation and scale of the templates can be accounted for
in matching, with little loss of information, via shifting
the template horizontally or/and vertically.

3.2. Log-Gabor filter

The log-Gabor filter [7] is a derivative of the stan-
dard Gabor filter, which is widely used in image pro-
cessing. The log-Gabor frequency response is Gaussian
in logarithmic frequency scale as opposed to the stan-
dard Gabor which has Gaussian frequency response in
linear scale. The log-Gabor frequency response is de-
scribed by:

—(log(w/wg))?
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where wy is the centre frequency of the filter and the
bandwidth is determined by the k/wy term. The main
advantage of the log-Gabor filter is that its DC com-
ponent is always zero, thus the filter bandwidth is not
limited to 1 octave, as it is for Gabor filters, and thereby
a lesser number of filters can be used to cover a desired
spectra. We use a one dimensional log-Gabor filter on
the columns of the templates, T'(r,0). Thus the pro-
jected image P(r, 8) is obtained by:

Pa(r,6) = FF(T(r,0)) % Galw)], 0= 5.7

2
where F and F~! denote the Fourier and the inverse
Fourier transforms, and G,,(w) is a log-Gabor filter at
a scale n. This corresponds to convolving a template
with the wavelet in the spatial domain. Both even and

odd symmetric responses are used in matching.



Figure 3. The robust ) function

3.3. Robust matching

The log-Gabor filter provides us with localized in-
formation. Thus the local frequency is not contami-
nated by the clutter or occlusion of surrounding regions.
However the local information of occluded or otherwise
corrupted regions is still present in the result. In clas-
sification, we use a simple nearest neighbour approach,
which includes a distance measure. We could use the
Euclidean distance. However this arrangement corre-
sponds to the least squares estimation, which is known
to be intolerant of outliers. The least squares method
minimizes the error function E:

E(r) = ZP(H) . plri) =77 3)

where r is the residual error. To see the influence of the
outliers on the error function more clearly, an influence
function 1) is defined as:

dp(ri)
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In the square error case with 1) = 2r;, the data points
retain a weight proportional to their residual value, no
matter how far from the mean they are. Thereby an out-
lier imposes a big influence on the evaluation.

Black and Jepson [4] identified a similar problem in
PCA, and used a more robust p function with good ef-
fect. They showed that the standard mapping of images
into the eigenspace corresponds to the least squares esti-
mation, and thus the mapping of noisy images produces
poor results. Their solution is to use a more robust map-
ping. The p function of their choice is:
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where p is a function of o as well as the residuals. In
this the value for o determines the point at which the
influence of potential outliers begins to decrease. It can
be seen in figure 3 that the new v function eliminates

Figure 4. Automatic enrolment

the influence of big residuals. Inspired by this, we use
the same p function (5) in our distance measure, D:

dr.n(i,) = [Pa(r.0)]; = [Palr.6);
D(T;, Ty) =Y pld(i, j), 0] . (6)
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4. Results

To evaluate our techniques, we have used 252 images
from 63 individuals, selected from the head-profiles of
the XM2VTS [11] database, wherein these 63 individ-
uals are those whose ear is not obscured by hair. There
are 4 images per individual in our database, which
are taken in 4 different sessions over a period of five
months, and thereby ensuring natural variation between
the images of the same subject. One image from each
subject is used for training of the model, whilst the re-
mainder are used for performance evaluation.

We have developed an automatic ear enrolment
method [2] which finds the position of the ear; an image
including the ear is then cropped (see figure 4). In this,
the ear is detected using a reduced Hough Transform
for ellipses [1] accruing tolerance to noise and occlu-
sion. Further cues from the orientation and size of the
ear as well as the characteristics of its edge points help
eliminating the erroneous votes in the Hough accumula-
tor space and thereby pinpoint the correct ear position.
Our automatic enrolment finds the ear in all 252 images.
The details of this work can be found in [2].

Recognition using the nearest-neighbour algorithm
on the model parts, obtains 91.5% correct recognition.
Exploiting the new log-Gabor coefficients alone, we
achieve an 85.7% recognition rate. In this we have used
nearest-neighbour algorithm on the Euclidean distances
of the log-Gabor coefficients. Exchanging the Eu-
clidean distance for the more robust distance metric(6)
improves the performance to 88.4%. We then combine
the two, log-Gabor and the model, using a simple deci-
sion fusion technique of sum of the normalized scores.
The hybrid classifier exhibits a significant improvement
with a 97.4% recognition rate, thus suggesting that al-
though the log-Gabor does not perform as well as the
model, it contains information which is new and inde-
pendent of that which is presented in the model.



Table 1. Recognition results

Model | Log-Gabor | Robust log-Gabor | Hybrid

91.5% 85.7% 88.4% 97.4%

-0 |log-Gabor
{=#=log-Gabor+robust matching |--
% The model

1-6-Hybrid classifier

Recognition Rate (%)
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Figure 5. Recognizing occluded ears

4.1 Occlusion test

Handling occlusion is one of our main objectives in
dealing with ear biometrics and at each stage we have
chosen our techniques accordingly. We have shown that
our automatic enrolment performs well in the presence
of occlusion [2], and in recognition we have compared
the performance of the model against PCA, and shown
that the model is superior at recognizing occluded ears
[3]. Figure 5 shows the recognition results against the
increasing occlusion. It can be seen that the robust
matcher improves the log-Gabor outcome consistently,
and thus it is a worthwhile addition. For this test, syn-
thetically occluded probes are automatically enrolled
and compared against a gallery of unoccluded images.
We occlude the ears from the top, similar to the occlu-
sion which is caused by hair. Figure 4 includes an ex-
ample in which a 40% occluded ear has been enrolled.

By the new information added from the log-Gabor
process, we have seen that the hybrid classifier is supe-
rior to both, the model and log-Gabor, separately. This
improvement is maintained as the ears are increasingly
occluded. However the log-Gabor measures seem to be
more affected by the occlusion and thus the hybrid per-
formance gradually approaches that of the model and it
eventually drops below it at around 50% of occlusion.

5. Conclusions

We have shown that a log-Gabor filter can be used to
further improve our previous model-based approach for

ear biometrics. The log-Gabor filter exploits the vari-
ations between the boundary curves of the ear, which
are under-presented in the model. The hybrid classifier
exhibits a significant improvement with a 97.4% recog-
nition rate. The destructive effects of occlusion were
moderated first via the localized approach of the log-
Gabor filter and then by applying a more robust match-
ing strategy which restricts the influence of erroneous
coefficients. Thereby the hybrid classifier advantage
over the model-based approach is consistent even for
the occluded samples.
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