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Abstract

We propose a forward selection method that con-
structs each new feature by analysis of tight error
clusters. Forward selection is a greedy, time-efficient
method for feature selection. We propose an algorithm
that iteratively constructs one feature at a time, until
a desired error rate is reached. Tight error clusters in
the current feature space indicate that the features are
unable to discriminate samples in these regions; thus
these clusters are good candidates for feature discovery.
The algorithm finds error clusters in the current feature
space, then projects one tight cluster into the null space
of the feature mapping, where a new feature that helps
to classify these errors can be discovered. The approach
is strongly data-driven and restricted to linear features,
but otherwise general. Experiments show that it can
achieve a monotonically decreasing error rate within
the feature discovery set, and a generally decreasing
error rate on a distinct test set.

1. Introduction

For many classification problems in a vector space
setting, the number of potentially useful features is too
large to be exhaustively searched [2]. Feature selec-
tion algorithms attempt to identify a set of features that
are discriminating but few enough for classifiers to per-
form efficiently. Such methods can be divided into three
categories: filters, wrappers, and embedded methods
[8]. Among wrappers and embedded methods, greedy
methods are most popular. Forward selection and back-
ward elimination each have their own advantages and
weakness. Because some features may be more power-
ful when combined with certain other features [12, 6],
backward selection may yield better performance, but
at the expense of larger feature sets. Also, if the re-
sulting feature set is reduced too far, performance may

drop abruptly [9]. On the other hand, forward selection
usually ranks features and selects a smaller subset. A
small set of features can also serve to predict models,
visualization, and outlier detection [13].

Two important negative results constrain what’s pos-
sible. The Ugly Duckling Theorem states that there is
no universally best set of features [15]; thus features
useful in one problem domain can be useless in an-
other. The No Free Lunch Theorem states that there
is no single classifier that works best for all problems
[16, 17, 18]. Taken together, these suggest that it is es-
sential to know both the problem and the classifier tech-
nology in order to identify a good set of features.

We propose a forward selection method that is based
on empirical data and incrementally adds one new fea-
ture at a time, until the desired error rate is reached.
Each new feature is constructed in a data-driven man-
ner, not chosen from a preexisting set. We experiment
with Nearest Neighbor (NN) classifiers because they
can work on any distribution without prior knowledge
of the parametric models of the distribution. Also, the
NN classifier has the remarkable property that with un-
limited number of prototypes, the error rate is never
worse than twice the Bayes error [4].

We assume that we are working on a two-class prob-
lem and that we were given an initial set of features
on which an NN classifier has been trained. Suppose
the performance of this classifier is not satisfactory. We
examine the distributions of erroneously classified sam-
ples and find there are almost always clusters containing
both types of errors. These can be found by clustering
algorithms or manifold algorithms [3]. Tight clusters
indicate that the current feature set is not discriminating
within these regions. Thus we believe that these clus-
ters are good places to look for new features which will
resolve some of these errors. We look for new features
in the null space of the current feature mapping. This
guarantees that any feature found in the null space is or-
thogonal to all current features. As we show in section



2, this method works well if the features are linear. Af-
ter finding the null space we project only those samples
in the selected tight error cluster to the null space. In the
null space we find a decision hyperplane and calculate a
sample’s directed distance to the hyperplane as the new
feature. The reason for projecting only samples in cer-
tain cluster is because different error clusters may be the
result of different decision boundary segments lost dur-
ing the projection to the current feature set. Projecting
only one cluster of errors to the null space and finding
a hyperplane that separates these errors saves compu-
tation time and allows us to find more precise decision
boundaries.

We conducted the experiments in a document im-
age segmentation framework, by trying to classify pix-
els into machine-print or handwriting [10, 1]. A se-
quence of six classifiers trained with the augmented fea-
ture sets exhibits a monotonically decreasing error rate.
The sixth augmented feature set dropped the error rate
compared to the the first set by 31%.

2. Formal Definitions

We work on a 2-class problem. We assume that
there is a source of labeled training samples X =
{x1,x2, ...}. Each sample x is described by a large
number D of real-valued features: i.e., x ∈ R

D. But
D, we assume, is too large for use as a classifier feature
space. We also have a much smaller set of d real-valued
features f

d = {f1, f2, ..., fd}, where d << D. Ap-
plying f

d on sample x we get a d-dimensional vector
f
d(x) = (x1, x2, ..., xd).

In the original sample space R
D, there exists some

kind of boundary between classes. After projecting the
data by f

d into R
d, the boundary was not preserved

well, and misclassification occurs. By projecting the
data back to the null space R

D−d, we restore informa-
tion lost by f

d, and can find a new feature independent
of f

d in this space. To do so we restrict the feature
extractor to be linear, and that the given feature set is
linearly independent. An example in 3D is shown in
Fig.1. Fig. 1(a) and Fig. 1(b) are two different perspec-
tives of the the original sample space. In a projection to
a 2D figure space, as in Fig. 1(c), there are two clusters
of errors. They result from different decision boundary
segments lost under f

d.
The null space can be defined as N(fd) =

{s|fd(s) = 0}. We give a brief introduction on how
to find and project the data to the null space [11].
Given f

d, a matrix that projects data from the sam-
ple space into the current feature space, a commonly
used linear algebra method, the singular value decom-
position, or SVD, can be used to find a set of vectors

(a) Original sample space R
D ,

D=3
(b) Another pespective of R

D .

(c) Error clusters in R
d,

marked by green circles.
(d) One dimensional null
space, shown as pdfs.

Figure 1: Example of relationships between sample
space, feature space, and null space.

spanning the null space of f
d. The SVD Theorem [7]

states that a singular value decomposition of a matrix
d × D ∈ R

d×D is a factorization f
d = UΣV T , where

Σ = diag(σ1, σ2, ..., σp) ∈ R
d×D is a d × D diagonal

matrix with entries σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, p =
min(D, d) and both U ∈ R

d×d and V ∈ R
D×D are

orthogonal matrices1.
Let σ1 ≥ σ2 ≥ ...σr > 0 be the positive singular

values of f
d. Then from the SVD theorem, we have

f
dvi = σiui, i = 1, ..., r

f
dvj = 0, j = r + 1, ..., D

where v ∈ R
D. Thus,

N(fd) = span{vr+1, ..., vD}.

The columns of V corresponding to the zero singular
values form an orthonormal basis of N(fd)[5]. Then

PD−d = V V T

is the unique orthogonal projection onto N(f d). Note
that although V is not unique, PD−d is [5].

To construct the new feature, we first find a separat-
ing hyperplane −→w among the projected samples in the

1A square matrix U is orthogonal if U
T

U = UU
T

= I .



null space. The new feature was constructed by calcu-
lating a directed Euclidean distance of given samples to
the hyperplane, −→w · x.

Naturally for real data we have no idea what the ar-
bitrary true decision boundary is, nor are we willing to
work in high dimensional space R

D. We use the per-
formance of the current classifier to guide our search.
We identify clusters of errors in the feature space. Af-
terwards, we select one that is both “tight” and contains
both types of errors. We assume we draw the data ran-
domly, that is, the drawn data fills the sample space with
probability density functions similar to the underlying
distribution. Thus a more condensed cluster implies that
by correctly classifying samples in the region, more er-
rors are likely to be corrected. Note that as was illus-
trated in Fig.1, different clusters of errors might come
from different decision boundary segments. Thus we
consider one cluster at a time, hoping to resolve some
errors. We project only the samples from the selected
cluster to the null space.

We find separating hyperplanes using a simple lin-
ear discriminant function. The covariance matrices for
the two classes are assumed identical and diagonal but
otherwise arbitrary. We propose a forward selection al-
gorithm that uses error clusters to guide the search for
new features one at a time.

Algorithm
Repeat

Draw sufficient data from the discovery set X,
project them into lower dimensional space by f

d, then
train and test NN on the data.

Find clusters of errors.
Repeat

Select a tight cluster containing both types of er-
rors.

Draw more samples from X into the cluster.
Project samples in the selected cluster back to the

null space.
Find a separating hyperplane in the null space.
Construct a new feature and examine its perfor-

mance.
Until the feature lowers the error rate sufficiently.
Add the feature to the feature set, and set d = d + 1

Until the error rate is satisfactory to the user.
Although clustering algorithms discover regions of

potential salient feature, there is no way of telling
whether the errors are from the same region in the orig-
inal space, or are clusters of errors that overlap because
of f

d. However, clusters that span a smaller region with
higher density are more likely to be from the same er-
rors in the original space. The clustering step, while al-
lowing the method to adapt to real world data, involves

more engineering choices than other parts of the algo-
rithm.

3. Experiment

We conduct experiments in the document image con-
tent extraction framework [10, 1]. In this framework,
each pixel is treated as a sample. Possible features are
extracted from a 25 × 25 pixels square, D = 625, with
the classification result assigned to the center pixel. Pix-
els are represented by 8-bit greylevels. Possible con-
tent classes are handwriting (HW), machine print (MP),
blank, and photos; for details see [10]. In our previ-
ous experiments, HW and MP are most often confused.
Thus we chose these two classes as our target classes.

We divide the data into three sets, training set, dis-
covery set, and test set. After training, the classifier
runs on the discovery set. A cluster with both types
of errors is identified, and a new feature is discovered.
The new feature is then tested on the test set. Each of
the three sets consists of seven images containing two or
more of the five content classes. The training set con-
sists of 4,469,740 MP samples and 943,178 HW sam-
ples. The test set consists of 816,673 MP samples and
649,113 HW samples. The feature discovery set con-
sists of 4,980,418 MP and 1,496,949 HW samples.

We run the classifier with one manually chosen fea-
ture, followed by the procedure described in Algo-
rithm. In addition, we normalize the length of vector
−→w because in the experiments, the length of the vec-
tor shrinks rapidly and may cause numerical instability.
Each feature value is normalized to the interval [0,255].

Fig.2 shows the error rate of the six discovery sets
and the test set. While the error rate on the discovery
set is monotonically decreasing, the error rate on the test
set is more erratic, but eventually decreasing. The initial
error rate using the one manually chosen feature alone
is 37.97%. The first discovered feature drop the error
rate 50% to 18.9%. All six discovered features with
the manually chosen feature drop the error rate 31% to
13.07%.

Figure 2: Error rate of discovery and test set.



Table 1 shows some statistics of the clusters selected.
We use the k-means algorithm and assign 6-10 centers,
according to the number of total errors in the discovery
set. We notice that although it is not always the tightest
cluster that gives us a useful new feature, a cluster too
loose never gives an informative feature. The guide-
line to find a denser cluster only serves to suggest re-
gions that are potentially interesting. On the other hand,
according to information theory [14], clusters with ap-
proximately equal number of both types of error pro-
vide more information than unbalanced clusters. How
to combine the two guidelines together is an engineer-
ing choice.

Table 1: Statistics of the clusters.
% of errors Avg. pairwise Max pairwise
MP→HW distance distance

1st 48.2 4.60 13.00
2nd 48.2 12.27 45.18
3rd 40.3 28.12 142.06
4th 45.5 35.52 119.18
5th 37.4 49.70 151.11
6th 51.6 60.72 225.21

4. Discussion and Future Work

In this paper we present a forward feature selection
algorithm guided by error clusters. Tight error clusters
in the current feature space indicate that the current fea-
tures are unable to distinguish samples in these regions.
The algorithm works by projecting a tight error cluster
found in the current feature space into the null space
of the feature mapping, where new salient features can
be found. We then construct new features designed to
correctly classify samples in these regions. We observe
that tighter clusters are more likely to find discriminat-
ing features and that looser clusters never yield good
features. A new feature is constructed by calculating an
Euclidean distance to the separating hyperplane of the
data in the error cluster in the null space. Our approach
is strongly data-driven, restricted to linear features, but
otherwise highly adaptive to different problem domains.
Although for this we use a simple linear discriminant
that assumes Gaussian distributions with a diagonal co-
variance matrix, the results seem to be promising. We
were able to lower the error rate monotonically for the
feature discovery set. For the camera ready paper, we
will report results on a larger dataset in different prob-
lem domains.
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