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Abstract—In this paper, we propose a novel method to register
images defined on spherical meshes. Instances of such spherical
images include inflated cortical feature maps in brain medical
imaging or images from omnidirectional cameras. We apply the
Geodesic Active Fields (GAF) framework locally at each vertex of
the mesh. Therefore we define a dense deformation field, which
is embedded in a higher dimensional manifold, and minimize
the weighted Polyakov energy. While the Polyakov energy itself
measures the hyperarea of the embedded deformation field,
its weighting allows to account for the quality of the current
image alignment. Iteratively minimizing the energy drives the
deformation field towards a smooth solution of the registration
problem. Although the proposed approach does not necessarily
outperform state-of-the-art methods that are tightly tailored to
specific applications, it is of methodological interest due to its
high degree of flexibility and versatility.

Index Terms—Biomedical image processing, Computational
geometry, Differential geometry, Diffusion equations, Image reg-
istration, Scale-spaces, Spheres, Surfaces.

I. INTRODUCTION

In this work, we are interested in a method to register
images that are sampled at the vertices of a spherical mesh.
Spherical image registration has several applications, in partic-
ular in brain imaging, for functional and anatomical analysis
of cortical feature maps, obtained through inflation of the
original cortical sheet [1], [2]. Other potential applications
include stereo vision and hyperresolution from omnidirectional
images, for robot navigation or surveillance [3].

Strictly speaking, image registration is the concept of map-
ping homologous points of different images, representing a
same object. In practice, however, it is often difficult to
establish homology in images based on this definition. For
automatic image registration, it is commonplace to substitute
homology by a measurable criterion of image dissimilarity,
which is to be minimized by an unknown deformation field
u. The determination of this deformation field is an ill-posed
inverse problem.

In previous work, we propose to embed the deforma-
tion field in a higher dimensional manifold, inspired by the
Beltrami-framework [4], [5]. There, the deformation field
is driven by a minimization flow towards a harmonic map
corresponding to the solution of the registration problem,
much like geodesic active contours in image segmentation. The
energy of the deformation field is measured with the Polyakov
energy weighted by a suitable image distance, borrowed from
standard registration models.

Here, we want to apply this framework, called geodesic
active fields (GAF), to images defined on triangulations of
the sphere. First, we establish the necessary tools to define
the local embedding and to calculate the minimizing flow.
Then, we characterize the impulse response and the denoising
properties of the regularizer, and illustrate the framework on
synthetic images.

II. GEODESIC ACTIVE FIELDS ON THE SPHERE

Geodesic active fields embed the deformation field in a
higher dimensional space and define a variational model using
the weighted Polyakov energy. While the Polyakov energy
itself only provides a regularity constraint, the weighting
drives the deformation field towards low image dissimilarity.
This approach directly generalizes to non-Euclidean images,
and thus automatically allows to work, e.g., with non-flat or
multiscale images, that are smooth and parametrizable.

Due to the “hairy ball”-theorem, however, it is known that
no artifact-free, global parameterization of the whole sphere
exists. Therefore the GAF framework can not be applied
directly to the whole spherical image. Instead, we decide to
work in local coordinates, by defining a local coordinate chart
for each vertex of the mesh. Using those local coordinate
charts, the global deformation field can be embedded locally.

A. Deformation Field

Before we can set up the embedding, we need to define the
deformation field and the local coordinate charts. We encode
the individual displacement of each mesh vertex ; into &} as
a local tangent vector ;. The actual displacement of the mesh
node is on the great circle along this tangent vector, and the
sine of the angle between #; and Z; is equal to the length of
the tangent vector ;, as shown in figure 1(a). This choice, and
the fact that all vertices reside on the unit sphere, provides a
simple expression for i; using vector products [6]:

’Ji:—fi/\(fi/\f;). (1)
Conversely, the displaced vertex is given as follows:
Ty = V1= [[dl]? - & + 2

B. Local Coordinates and Parallel Transport

Now, we define a local coordinate chart for each vertex.
First, a pair of linearly independent tangent vectors need
to be found to define the tangential plane at &;. The cross
product between the surface normal and another, linearly
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Fig. 1.
the tangential plane.

independent vector yields a first tangent, a subsequent cross
product between the normal and this first tangent yields a
second, orthogonal tangent:
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where Z; is one of the l-ring neighbors, j € Ni(i), as
illustrated in figure 1(b). The projection of the coordinates of
the neighbors into the newly defined local coordinate system
of the tangent plane is then defined as

0 = (0,00) = (&) — 70, 6), (7 — T,63)). (4)
Note that the node #; has coordinates (0,0) in its own local
coordinate chart, see figure 1(c).

To work with the tangent vectors of neighboring vertices,
we take them to &; using parallel transport. The tangent vector
1i; is parallely transported along the great circle defined by Z;
and ;. Let the axis & of this great circle be
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The great circle is a geodesic, and therefore parallel transport
has two main properties: components perpendicular to the
geodesic remain perpendicular, and components along it re-
main parallel. Therefore we have for the parallely transported
_,,i

uy:

0y = (U, D)d + (i, (G A T5)) (@A Ty). (6)
Once the neighboring deformation vectors have been trans-
ported to the central vertex of the patch, they can be repre-
sented in the local coordinate chart as 2-dimensional vectors
T
" i, (7)

(ub,v) = [é163 g
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C. Deformation Field Embedding and Flow

Using the local coordinates, the deformation field can be
embedded locally around each vertex. To simplify the notation,
the deformation field tangent vectors are written (u,v). The
embedding map X : ¥ — M is given by 4 functions of 2
variables. Further, a Riemannian structure is introduced: the
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(a) Deformation model. (b) One-ring patch on a spherical mesh and its local basis vectors. (c) Local coordinates of the one-ring neighbors within

metric h;; locally measures the distances on M, whereas on
> distances are measured using the induced metric g, =
hij0,X"0,X7. Thus:

X 1 (01,602%) — (6,02, u,v)
hij = dlag(]‘a 1; Bzaﬁz)
[ 14+ 82wt +0]) B (uruz + vivs) (8)
I = B2 (uyug + viva) 1+ B2(ud + 03)
g =1+ 3(IVul* + [Vu]?) + 84 (Vu, Vo)?,

where (Vu, Vv) = uzv, — uyv, is defined as the magnitude
of the cross product of the gradient vectors Vu and Vv and
measures the misalignment of the gradients between different
deformation field components [7]. All these settings, put into
the general equations, produce the following energy functional
and its minimizing flow:

Egar = [ f\/gd0*d6?
Ou = fH" + O fg"" 0, X" u — %fu 9)
o = fH + O fg"" 0, X*0,v — %fv.

In the following paragraphs, we will specify the weighting
function f and its partial derivatives O f, as well as the method
to estimate the curvature vector H, image gradients, point
localisation and mesh interpolation.

D. Weighting Function

An intuitive primer for monomodal image registration is the
squared error metric [8], leading to:

F(E@F)=14a - (MET) - F(@))?, (10)

where F' and M refer to the fix and moving images, respec-
tively. The 1 provides a lower bound of local weight in the
Polyakov energy, and o allows to balance the impact of the
data-term with respect to the regularization. The evolution
equation includes the partial derivatives of the weighting
function with respect to all components of the embedding.
The spatial gradient is easy to be estimated numerically on
the sampled mesh, whereas the derivatives with respect to the
deformation are obtained using the chain rule:
- or

fa=20- (M(@) - F(@))- 5= - VM),
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where VM refers to the gradients of the fix and moving im-

ages, respectively. In local coordinates this writes (f,, f,) =

RN 2.
[6162]T fa. The second order tensor 2Z- is calculated as:
ou
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where . refers to the Kronecker delta.
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E. Curvature Vector Estimation

We use the Desbrun estimator to compute the mean curva-
ture vector [9], [10]. It is of the following form:

> wi(X; - X3),

JEN1(4)

H; = 13)

where w;; are the weights assigned to the edge connecting X;
to X;. Several estimators of this class have been discussed in
[11], [12]. The weighting proposed by Desbrun was derived
using the first variation of area and reads as follows:

cot aj + cot F;
A

4A (14

wij =
where «; and (3; are the two angles opposite to the edge
X;—X; in the two triangles sharing this edge, and A is the sum
of the areas of the triangles having X; as a common vertex,
i.e. the area of the one-ring patch. This estimator was already
used with success in a similar context to build a Beltrami-flow
scale-space on spherical meshes [10].

F. Gradient Estimation

For functions defined at the vertices of triangular meshes,
the gradient can be fitted using least squares approximation
[13]. As one is interested in the gradient within the tangent
plane of the manifold, it is useful to enforce this by design, as
happens when using local coordinate charts restricted to the
tangential plane. Indeed, a first order Taylor expansion of some
feature map c around vertex ¢, using the local coordinates 0;
yields:

e(f) = ci + (05, Vo) + 5. (15)
To simplify the notation, we define the residuals y; = ¢(d;) —
¢; and rewrite equation (15) accordingly:

—

y; = (0;,V¢) + €. (16)

Now we look for an optimal ﬁc, which minimizes €in the least
square sense. We define the matrix Ag; = [0;]x, where k =
1,2 denotes the components of the local coordinates vector
é;—. Note that this matrix only depends on the geometry of the
local patch. It can therefore be reused for the derivation of any
number of features in that vertex. The minimization problem
and its direct solution are thus given by

—

Ve = argmin(||[AVe — §])) = (ATA)"*ATg. (A7)

G. Point Location and Mesh Interpolation

The weighting function f is evaluated at each vertex of the
fix image. Most of the time, this vertex, called the query point,
will not coincide with a vertex of the warped moving image,
and interpolation will be required.

To do so, one first has to find the face of the moving mesh,
that contains the query point. Here, we use spherical triangle
walk to locate the point [14]. Once the surrounding triangle
has been found, the image value can be bilinearily interpolated
from its three vertices using the barycentric coordinates of the
query point.

III. RESULTS

The regularization of the GAF framework is characterized
by its impulse response and denoising properties. The impulse
response is obtained by disconnecting the data-term, i.e., by
setting alpha = 0 and thus the weighting function to f = 1.
The diffusion of an initial single peak is illustrated in figure
2(a)-(b). Regularization is largely independent of the sampling
density, as the field looks almost the same after two runs on a
fine and a coarse sphere mesh. Denoising for two different /3 is
illustrated in figure 2(c)-(d). Smaller 8 produces Gaussian-like
diffusion, whereas higher (3 corresponds to feature-preserving
TV-norm minimization [4].

To illustrate the complete registration framework, a pair
of synthetic images has been registered as shown in figure
3. Registration is successful, as the resampled moving image
M (') nicely matches the fixed image F'(Z), under reasonable
deformation ¥ — Z’. Over the iterations, the decrease in
the data-term (red) leads to a increased hyperarea of the
embedding map (black), but the global energy still decreases
monotonically (blue).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced the geodesic active fields
framework for image registration to applications, where im-
ages are defined on spherical meshes. We have shown that the
proposed method works as expected under different aspects.
The regularizer has the desired impulse response irrespective
of the image sampling density, the anisotropy of the diffusion
is tunable by the parameter (3, and the framework performs
correctly on a set of synthetic test images. Note that, in
contrast to planar image parameterizations, where all constant-
valued deformation fields are stable, the boundary-free mesh
of the sphere allows only the trivial solution as steady state in
absence of a data-term.

We do not claim to outperform highly specialized state-
of-the-art methods, but like to emphasize the methodological
aspects of our framework, in particular geodesy and sampling
independence. Further research will focus on the application
of this novel method to actual cases of spherical image
registration, e.g. on cortical feature maps. In this context, the
intrinsic capability of the GAF framework, to generalize to
multi-scale images, will be of particular value.
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Fig. 2.
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(a)-(b) Impulse response on a coarse and fine sphere mesh. (c)-(d) Denoising.

fdo'do?
Q

/ /30" do*

9] Jo

——/f\/§d€1d92
Ql Jo

|
B~
S~

| =

)

(e

Registration of a synthetic image pair. (a)-(b) Fix and moving image. (¢) Warped moving image after registration. (d) Deformed mesh. (e) Evolution

of complete GAF energy (blue), data term only (red), and regularizer only (black).
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