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Abstract—Estimation of structure and motion in computer
vision systems can be performed using a dynamic systems
approach, where states and parameters in a perspective system
are estimated. We present a novel on-line method for structure
and motion estimation in densely sampled image sequences. The
proposed method is based on an extended Kalman filter and
a novel parameterization. We assume calibrated cameras and
derive a dynamic system describing the motion of the camera and
the image formation. By a change of coordinates, we represent
this system by normalized image coordinates and the inverse
depths. Then we apply an extended Kalman filter for estimation
of both structure and motion. The performance of the proposed
method is demonstrated in both simulated and real experiments.
We furthermore compare our method to the unified inverse depth
parameterization and show that we achieve superior results.

I. INTRODUCTION

Estimation of 3D-structure and motion from 2D images is
a central problem in computer vision. There exist essentially
two different approaches to solve this problem; (i) batch
approaches and (ii) iterative (recursive) approaches. Batch
approaches aim at providing an accurate result by using all the
images at the same time. These approaches are typically based
on multi-view tensors, bundle adjustment or convex optimiza-
tion, see [10] for the former and [12] for the latter. Iterative
(or recursive) approaches aim at real-time performance, by
updating a current estimate as soon as a new image becomes
available. These approaches are either based on variations of
methods used for batch approaches, e.g. iteratively estimating
the camera pose and the structure, [3], or by fast estimation
of relative motion [17].

Yet another approach is to formulate the camera motion and
the imaging process as a dynamic system and apply non-linear
observers to estimate the structure and the translational and
rotational velocities of the motion. The standard approach is
to apply an extended Kalman filter to a dynamic system, with
a perspective transformation in the output equations. One of
the pioneering approaches is [2] where an extended Kalman
filter is applied directly to the dynamic system, without any
re-parameterization. Another approach, based on tracking the
essential matrix can be found in [18].

For structure estimation only, i.e. known motion, a num-
ber of non-linear observers based on methods for automatic
control theory have been developed, e.g. [1], [5], [7], [9],
[13], [14], [16]. Similar approaches, based on adaptive non-
linear observers, for full structure and motion estimation can

be found in [11], [19], [20].
Lately, [6], [8] developed a variant of the extended Kalman

filter, by using the inverse depth as one of the parameters,
adjusting the uncertainties to the imaging situation and fixing
the imaging rays from the first camera in order to gain stability.
The method is highly over-parameterized but performs well
in most situations, both in terms of accuracy and robustness.
Another approach based on inverse scaling can be found in
[15].

This paper describes how a re-parameterization of the un-
derlying perspective dynamic system can be used to formulate
the structure and motion estimation problem as an observer
problem of a non-linear dynamic system, with a linear output
function. We will show that this novel parameterization results
in a more accurate and stable extended Kalman filter.

II. PROBLEM FORMULATION

Consider a calibrated perspective camera that is observing
a moving rigid object. The camera system can be written as
(assuming the camera is situated at the origin and that the
optical axis is aligned with the z-axis)[

y1
y2

]
=

[x1

x3
x2

x3

]
, (1)

where yi denote the image coordinates (compensated for
intrinsic parameters) and xi denote the (time-varying) object
coordinates. Introducing

ξ =
(x1

x3

x2

x3

)T
, (2)

we can write down a dynamic system

ẋ = Ax+ b ,

y = ξi ,
(3)

where

A = S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4)

is the skew symmetric matrix obtained from the (possibly time
varying) angular velocity vector

ω =
(
ω1 ω2 ω3

)T
(5)

and
b =

(
b1 b2 b3

)T
. (6)



denote the (possibly time varying) translational velocity. We
can now state the problem as follows:

Problem 1 (On-line structure and motion estimation). Given
the image coordinates y from (3), estimate recursively the
object coordinates x and the motion parameters ω and b.

III. THE PARAMETERIZATION

Consider (3) and introduce the scalar parameter γ and the
vector z,

γ =
1√
xTx

, z = γx , (7)

where γ can be interpreted as the inverse distance to the object.
Observe that ξ, according to (2) and by the definition of z in
(7), also can be expressed as

ξ =
( z1
z3

z2
z3

)T
. (8)

Using (7) and the definition of ξ in (2), the vector z may be
expressed as

z =
1√

ξ21 + ξ22 + 1

(
ξ1 ξ2 1

)T
(9)

and can thus be assumed known. This vector can be interpreted
as the image coordinates on a spherical image plane.

Hence, z is a measurable signal, and can therefore be
considered an output of the system (3). The parametrization
exploits this fact, and aims at rewriting the system (3) so that
z appears explicitly in the equations.

Using (3) and the fact that xTAx = 0 since A is skew-
symmetric, gives, introducing

g0(z) = I − zzT (10)

a rewritten dynamic system, corresponding to (3), on the form

ż = Az + g0(z)bγ

γ̇ = −γ2zTb .
(11)

For the motion of more than one point a dynamic system
corresponding to (11) is obtained as

żi = Azi + g0(z
i)bγi

γ̇i = −(γi)2(zi)Tb
, i ∈ {1, 2 . . . N} , (12)

where N denotes the number of feature points. Equation (7)
together with (11) and its multipoint version (12), constitute
the desired dynamic vision parameterization, from which we
shall proceed. Observe the the dynamic system contains 4 state
variables; 3 for z and 1 for γ and that z has to fulfill the
constraint |z| = 1.

IV. THE EXTENDED KALMAN FILTER

The extended Kalman filter estimates the system state sk
given a previous estimate ŝk−1, a new measurement µ and
state transition and observation models sk = f(sk−1) and
µk = h(sk). At every timestep the new state and the state
covariance P are predicted,

ŝk|k−1 = f(ŝk−1|k−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

(13)

and, given a new measurement µk, corrected to

ŝk|k = ŝk|k−1 +Kk

(
µk − h(ŝk|k−1)

)
Pk|k = Pk|k−1 −KkHkPk|k−1

(14)

where

Fk−1 =
∂f

∂s

∣∣∣∣
ŝk−1|k−1

, Hk =
∂h

∂s

∣∣∣∣
ŝk|k−1

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1
(15)

and Q and R the assumed process and measurement noise
covariances, respectively.

Adapting the dynamic system (12) to the EKF setting, the
state vector is taken to be

s = [bT, ωT, (z1)T, γ1, . . . , (zN )T, γN ]T , (16)

and measurements

µ = [ξ11 , ξ
1
2 , . . . , ξ

N
1 , ξ

N
2 ]T . (17)

The measurement equation is simply

[ξi1, ξ
i
2] =

[zi1
zi3
,
zi2
zi3

]
, (18)

while the update equation is a discretized version of (12):

z̃i = eS(ωk)zik + g0(z
i
k)bkγ

i
k

γ̃i = γik − (γik)
2(zik)

Tbk

zik+1 = z̃i|z̃i|−1

γik+1 = γ̃i|z̃i|

, i ∈ {1, 2 . . . N} , (19)

where also |zi| = 1 is enforced. An alternative approach is to
store only two of the components of z in the state vector, and
reconstruct the third, when needed, as z3 =

√
1− z21 − z22 ,

obviating the need for normalization above. While the EKF is
not guaranteed to keep z21+z

2
2 ≤ 1, in practice it is found that

this works well, and has the benefit of minimizing the state
vector size.

Note that we assume a camera-centric coordinate system
and estimate only linear and angular velocities, which must
be integrated over time to recover the absolute motion. The
approach is similar to the one presented in [4] which is a
camera-centric version of the unified inverse depth method
[6].

V. EXPERIMENTS

In the following experiments, no priors on the structure or
motion are given. Features are initialized at an arbitrary depth
and with large uncertainty in the γ coordinate. The linear and
angular velocities are assumed constant, and acceleration is
modeled as zero-mean Gaussian process noise.

As has been reported in [6], the EKF can converge under
these circumstances; however, it is found that fixing the depth
of one point, thus determining the overall scale, greatly aids
convergence. Further, the normalization step of the update
equation (19) has been found not strictly necessary (when us-
ing the full parameterization) and in fact does not significantly
impact the results.



We repeat an experiment in [15] and show that the proposed
parameterization does not suffer from the underestimation of
uncertainty associated with the inverse depth parameterization
of [6] and typically converges faster as a result (figures 1 and
2).

(a) Unified inverse depth

(b) Proposed

Fig. 1. Position and covariance estimates after observing 30 frames of
simulated data (black: ground truth, blue: estimate ±σ). The inverse depth
parameterization underestimates the errors, here leading to slower conver-
gence, while the proposed parameterization more accurately captures the depth
uncertainty.

The proposed parameterization shares the measurement lin-
earity with the inverse depth parameterization, since they are
equivalent in the limit of small angles. Due to the camera-
centric representation, however, the update equation is not
linear.

We also apply the proposed and unified inverse depth meth-
ods to a real video sequence, reconstructing camera motion
and 3D coordinates of 7 feature points tracked over 70 frames.
Some geometry is overlaid to verify the results (figure 3).
A (subjective) assessment indicates that the proposed method
gives a more consistent reconstruction.

Fig. 2. Convergence plot of the Cartesian coordinates of a point in
a simulated reconstruction problem. Top: inverse depth, bottom: proposed
parameterization.

VI. CONCLUSIONS

We have used a novel parameterization in order to develop
an extended Kalman filter for full structure and motion esti-
mation. The filter is shown to perform well on both simulated
and real data and has been compared to the current state-of-
the-art. Further studies will be to handle missing data, e.g.
novel and disappearing tracks, and increase the robustness to
false matches.
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