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Abstract—A novel non-linear dimensionality reduction
method, called Temporal Laplacian Eigenmaps, is introduced
to process efficiently time series data. In this embedded-based
approach, temporal information is intrinsic to the objective
function, which produces description of low dimensional spaces
with time coherence between data points. Since the proposed
scheme also includes bidirectional mapping between data and
embedded spaces and automatic tuning of key parameters, it
offers the same benefits as mapping-based approaches. Experi-
ments on a couple of computer vision applications demonstrate
the superiority of the new approach to other dimensionality
reduction method in term of accuracy. Moreover, its lower
computational cost and generalisation abilities suggest it is
scalable to larger datasets.
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I. INTRODUCTION

With the exponential increase of data production driven by
applications such as the internet, computer vision, medical
imaging, speech recognition and genomics, powerful tools
are required by scientists to allow the analysis of these
data. Since real datasets are usually highly dimensional
and nonlinear, nonlinear dimensionality reduction techniques
have become essential in the exploration of large volumes
of multivariate data.

These methods can be classified in two main categories:
mapping-based and embedding-based. Mapping-based ap-
proaches, such as Gaussian process latent variable model
(GPLVM) [1], use probabilistic nonlinear functions to map
the embedded space to the data space. On the other hand,
embedded-based approaches such as Laplacian Eigenmaps
(LE) [2] and Isomap [3], estimate the structure of the under-
lying manifold by approximating each data point according
to their local neighbours on the manifold.

As many datasets are time series, quality of embedded
spaces can be improved by taking into account the temporal
dependencies between points. Spatio-temporal Isomap (ST-
Isomap) [4] empirically alters the original weights in the
graph of local neighbours to emphasise similarity between
temporal related points. Similarly, back constraint GPLVM
(BC-GPLVM) [5] is able to include temporal coherence
constraints to ensure the smoothness of the mapping between
spaces. Another mapping-based approach, i.e. Gaussian pro-
cess dynamical model (GPDM) [6], integrates time informa-

tion by associating nonlinear, autoregressive dynamics to the
embedded space.

When dealing with time series, all these temporal ex-
tensions of dimensionality reduction methods generate bet-
ter quality embedded spaces than the initial approaches.
However, they also suffer from their original limitations:
embedding-based techniques are very sensitive to the choice
of manually set parameters such as neighbourhood size,
whereas mapping-based approaches are so time-consuming
that they are limited to applications which do not rely on
large training sets.

Many computer vision applications, such as body pose
tracking and action recognition, require the creation of low
dimensional models learned from large time series datasets.
Since accuracy is highly correlated to training set sizes,
mapping-based approaches are usually not suitable. On the
other hand, embedding-based methods suffer from lack of
robustness. In order to deal with both limitations, we propose
a novel embedding-based method called temporal Laplacian
Eigenmaps (TLE) where temporal information is integral
part of the objective function and neighbourhood sizes are
derived automatically from data analysis. This is achieved
by introducing two types of intuitive temporal graphs which
are incorporated into the LE framework. This produces
description of low dimensional spaces which integrates time
coherence between data points. Our method is particularly
suitable for time series data which include data repetition;
otherwise it is equivalent to standard LE.

The structure of this paper is organised as follows. After
introducing the TLE algorithm, it is validated qualitatively
and quantitatively on real datasets of human motion. Then,
we apply our method to an action recognition task. Finally,
conclusions and future work are presented.

II. METHODOLOGY

Temporal Laplacian Eigenmaps algorithm is an unsuper-
vised nonlinear method for dimensionality reduction which
learns manifolds designated for time series data. Given a set
of data points Y = {yi}(i=1..n) distributed on a manifold in
a high dimensional space (yi ∈ RD), TLE is able to discover
their low dimensional representation X = {xi}(i=1..n),
xi ∈ Rd with d ≪ D by preserving the temporal structure



of the data manifold instead of its local geometry as standard
LE does [2].

The temporal similarity between data points is maintained
implicitly during dimensionality reduction by building new
types of neighbourhood graphs (Fig. 1) which express
temporal dependencies. Consequently, local temporal neigh-
bours are placed nearby in the embedded space without the
need to enforce any artificial constraints as in [4]. Two types
of temporal neighbourhoods are defined for each data point
Pi:

∙ Adjacent temporal neighbours (A): the 2m closest
points in the sequential order of input (Fig. 1a):

Ai ∈ {Pi−m, ..., Pi−1, Pi, Pi+1, ..., Pi+m} (1)

∙ Repetition temporal neighbours (R): the qi points simi-
lar to Pi, extracted from the qi repetitions, Fik, of time
series fragment, Fi, defined by 2s adjacent temporal
neighbours (Fig. 1b):

Ri ∈ {Fi,1(C), ..., Fi,qi(C)} (2)

where Fi,k(C) returns the centre point of Fi,k.

Figure 1. Description of temporal neighbours (green dots) of a given data
point, Pi, (red dots) in a) adjacent and b) repetition graphs.

The process of dimensionality reduction can be sum-
marised by the following steps.

First, weights W are assigned to the edges of each graph
G ∈ {A,R} using the standard LE formulation:

WG
ij =

{
exp(∥yi − yj∥2) i,j connected
0 otherwise (3)

Then we introduce the following extended cost function
to combine information from both graphs:

argminX = XTLAX +XTLRX (4)

subject to: XTDAX +XTDRX = I (5)

where DG = diag{DG
11, D

G
22, , D

G
nn} is a diagonal matrix

with entries: DG
ii =

∑n
j=1W

G
ij , and LG = DG−WG is the

Laplacian matrix. The minimum of the objective function
can be found by applying Lagrange multipliers to Eq. 4
subject to the constraint expressed by Eq. 5:

∧(X,�) = XT (LA+LR)X−�(I−XT (DA+DR)X) (6)

(LA + LR)X = �(DA +DR)X (7)

The embedded space X is spanned by the eigenvectors
given by the d smallest nonzero eigenvalues � using the
generalised eigenvalue problem (Eq. 7).

The selection of 2m adjacent neighbours, where m=1,
is straightforward since it is based on the data temporal
order (Eq. 1). The size of the repetition neighbourhood, q,
corresponds to the number of times a state is repeated in
the training set. While ST-Isomap considers this as prior
knowledge, we overcome this constraint by introducing a
procedure to automatically determine the optimal repetition
neighbourhood:

1) Associate to each data point, Pi, 2s adjacent temporal
neighbours, where s=5, to create the local trajectory,
Fi, centred on Pi.

2) Search for similar trajectories Fi,k, according to the
dynamic time warping metric (DTW) [7] and a simi-
larity of 1.5 standard deviations by sliding a warping
window through the entire training set.

3) Extract from each similar trajectory, Fi,k, the data
point which corresponds to Pi, i.e. the centre of Fi,k.
The extracted points define Pi’s temporal repetition
neighbourhood.

III. VALIDATION OF TEMPORAL LE APPROACH

The proposed algorithm is evaluated through a compara-
tive analysis of performance produced by standard dimen-
sion reduction methods, i.e. LE, Isomap and BC-GPLVM,
and their respective improved temporal versions, i.e. TLE,
ST-Isomap and GPDM.

Since activity independent techniques have been used
to produce 3D posture estimates [8]–[10] and analysis of
such sequences allows activity identification [11], initial
estimates can be refined using learned motion models. Here,
MoCap data of repeated actions provided by the HumanEva
dataset [12] are converted into quaternions, which produces
sequences of 52-dimension feature vectors. Then, each ac-
tion space is reduced to their intrinsic dimensionality which
is 2 according to eigenvalue-based estimator [13]. Finally,
3D pose estimates are refined using a nearest neighbour
approach: estimates are projected to the embedded space and
the nearest neighbour is projected back to the posture space
[14]. The reconstruction error of the refined 3D poses is
calculated using the groundtruth provided in the HumanEva
dataset [12].

In order to evaluate embedding-based methods using this
framework, we have included a mapping function which
allows projecting data between high and low dimensional
spaces. This is achieved using unsupervised Radial Basis
Function network [14].

Here, we consider three different subjects performing two
actions (walking and jogging). To measure the performances
of the different methods, experiments are conducted using
cross-validation taking either one or two subjects for training
leaving respectively two or one subjects for testing. Initial



pose estimates are simulated by introducing a Gaussian
noise to groundtruth poses to obtain an average error of
80mm. Quantitative results are calculated by averaging 5 test
sequences. Unlike TLE and mapping-based approaches, all
other embedding-based methods require manual parameter
tuning. In this study, we used the default parameters pro-
vided with the Matlab implementations of BC-GPLVM [5]
and GPDM [6]. In the case of spectral methods, extensive
testing was conducted to determine the optimal settings
for each experiment. In addition, the number of nontrivial
neighbours required for ST-isomap [4] was calculated using
the TLE estimation procedure.

Performance analysis confirms the generalisation abilities
of the methods integrating temporal constraints since data
from a second subject improves their accuracy (Table I).
Conversely, performances of Isomap and LE worsen. Fig.
2a, 2b, 2c shows these embedding-based methods fail to
produce a unique ellipse to represent the 2-subject walking
cycle in the embedded space. Among temporal methods, BC-
GPLVM and TLE benefit the most from additional training
samples (accuracy +12%). On the other hand, GPDM’s
dynamic model seems to be able to optimise most of its
parameters from a single subject. Consequently, TLE and
BC-GPLVM are the most successful approaches. However,
TLE is not only more precise and produces a better quality
embedded space (Fig. 2b, 2f), but also significantly faster,
even when the cost of the proposed automatic parameter
estimation procedure is added (Fig. 3 last columns). This is
very important because this shows that, unlike BC-GPLVM,
TLE has the ability to learn models from much larger
training sets which should conduce to even better results.

Table I
REFINEMENT ACCURACY.

Accuracy (std) Walking: Walking: Jogging: Jogging:

in mm 1 subject 2 subjects 1 subject 2 subjects

Isomap 73.3 (4) 81.9 (22) 79.2 (5) 87.6 (12)

ST-Isomap 70.9 (12) 69.6 (7) 77.6 (10) 74.0 (9)

BC-GPLVM 70.5 (7) 62.4 (5) 77.0 (4) 68.8 (3)

GPDM 67.1 (9) 66.2 (8) 74.1 (4) 72.2 (5)

LE 72.5 (5) 86.0 (5) 76.7 (5) 90.8 (3)

TLE 64.9 (4) 57.3 (2) 71.8 (3) 63.5 (3)

IV. APPLICATION TO ACTIVITY RECOGNITION

In the previous section, we have demonstrated the su-
perior performance of TLE on a human pose estimation
scenario. Here, we integrate our technique within a standard
human action recognition framework [15] to perform video
annotation. In addition to the static 2916-dimension feature
vector, which is built using implicit distance functions over
extracted silhouettes, we include dynamics characteristics
provided by optical flow [16]. Then, using the generalisation

(a) (b) (c)

(d) (e) (f)

Figure 2. Embedded spaces for walking (2 subjects) using a) Isomap, b)
BC-GPLVM, c) LE, d) ST-Isomap, e) GPDM and f) TLE.

Figure 3. Training times based on either 1 (blue) or 2 subject (green)
walking sequences (parameter estimation is manual for all embedding-based
methods).

power of TLE, we produce a single 4-dimension descriptor
per action instead of the action and subject dependent
descriptors required by the standard framework [15]. Finally,
action classification is performed by applying the sum rule of
the following three metrics: the modified Hausdorff distance
[17], curve dissimilarity function [18] and optical flow
variation.

Performance of our system is evaluated using the Weiz-
mann human action dataset [17] which consists of 9 different
subjects repeating several times 10 actions. This provides
240 instances of simple motions, such as bending and
waving. Quantitative results are calculated using the popular
nine-fold cross validation schema already used by [17], [19],
[20].

Action recognition results are presented in Table II. Usage
of TLE improves accuracy of the standard framework [15]
to 100% which is achieved by the most recent state of the
art methods. Since TLE’s generalisation property handles
stylistic variations displayed by different people, this scheme
is scalable to a larger subject population.



Table II
COMPARISON TO PREVIOUS RESULTS ON THE WEIZMANN DATASET.

Name Accuracy Comments

TLE + [15] 100% Model per action

Blackburn [15] 95% Model per action per subject

Blank [17] 100% No action model

Yeffet [19] 100% Model per action

Schindler [20] 100% Model per action

Jhuang [21] 98.8% Model per action

Wang [22] 97.8% Model per action

V. CONCLUSION

This paper introduces a novel embedded-based dimen-
sionality reduction approach, temporal LE, dedicated to time
series. Its main contribution is the inclusion of temporal
information including repetitions into the LE framework
without requiring the manual tuning of parameters. As
demonstrated in 3D pose recovery and action recognition
applications, TLE ensures temporal coherence which im-
proves the generalisation properties of the produced em-
bedded spaces. In addition, the method is computationally
efficient, which provides the data scalability which lacks
from mapping-based dimensionality reduction approaches.
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