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Abstract

Craniofacial disorders commonly result in various head shape dysmorphologies. The goal of this

work is to quantify the various 3D shape variations that manifest in the different facial

abnormalities in individuals with a craniofacial disorder called 22q11.2 Deletion Syndrome.

Genetic programming (GP) is used to learn the different 3D shape quantifications. Experimental

results show that the GP method achieves a higher classification rate than those of human experts

and existing computer algorithms [1], [2].
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I. Introduction

Evaluation of the facial variation observed in genetic conditions has traditionally relied on

clinical description and select measurements taken directly with calipers. Three-dimensional

surface imaging systems now allow for craniofacial assessment through evaluation of 3D

shape. Quantification of the craniofacial variation may aid investigations into the genotype-

phenotype associations in conditions that affect the head and neck.

This paper describes the use of genetic programming for learning 3D shape quantification

and investigates its application in quantifying the dysmorphologies associated with 22q11.2

deletion syndrome (22q11.2DS), a disorder associated with a 1.5–3MB deletion on

chromosome 22 that occurs in 1:4000 individuals. Phenotypic variability is a hallmark of

this condition, and over 180 features have been associated [3]. The craniofacial features in

this condition have been well-described, and include a bulbous nasal tip, tubular appearance

to the nose, retrusive chin, among others. A few studies have incorporated direct

anthropometric measurements [4], while two automated methods have been proposed.
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Boehringer et al. [5] applied PCA on the Gabor wavelet transformation of 2D photographs

of individuals, while Hammond et al. [6] used the dense surface model and average face

approach to classify individuals with 22q11.2DS.

The remainder of this paper is organized as follows. First, the dataset used to develop and

test the methodology is described. The overall methodology is described next. In the

experimental results section, the classification and quantification experiments for nine facial

abnormalities associated with 22q11.2DS are described and analyzed. Finally, conclusions

are provided.

II. Datasets

Our 22q11.2DS dataset consists of the 3D craniofacial surface meshes obtained from the

3dMD imaging system [7]. The obtained 3D face models were pre-processed and pose-

normalized using an automated system [8]. The dataset contains 86 individuals: 43 cases and

43 controls. We asked three dysmorphologists to rate the facial features observed on a 4-

point scale. This study focuses on nine facial features: midface hypoplasia, tubular nose,

bulbous nasal tip, prominent nasal root, small nasal alae, retrusive chin, small mouth, open

mouth, and downturned mouth. The groundtruth for each facial feature of an individual in

the dataset is the logical OR of the labels from each of three craniofacial experts.

III. Methodology

Our quantification learning framework begins with the selection of the facial region that is

most pertinent to a given facial abnormality. Features in the form of a 2D histogram of

azimuth and elevation angles of surface normals are then extracted from the selected facial

region. The framework continues by selecting features from this region using Adaboost [9].

Genetic programming is then used to combine the selected features and produce the

quantification of a given facial abnormality.

A. Facial Region Selection

To study the different facial abnormalities, we focus on the facial region that is most

pertinent to that abnormality. The nine facial abnormalities cover three different areas of the

face: midface, nose, and mouth. The nose region is extracted using a trapezium bounding

box that covers the nose area of the face (Figure 1(a)). The mouth region is extracted using a

rectangular bounding box that covers the mouth area of the face (Figure 1(b)), while the

midface region is extracted using a rectangular bounding box that covers the middle portion

of the face (Figure 1(c)).

B. 2D Histogram of Azimuth-Elevation Angles

Once the facial region pertinent to a given facial abnormality has been selected, features are

extracted from the selected region. Our methodology for representing 3D facial shape uses

2D histograms of the azimuth and elevation angles of surface normal vectors of the 3D

points in the region [2]. Figure 2(a) shows the selected midface region of an individual in the

dataset, while Figure 2(b) shows the 8 × 8 2D histogram of the region displayed on a color

map. High histogram bin values are represented by warm colors (red, orange, yellow), while
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low bin values correspond to cool colors (blue, cyan, green). The histogram size was

empirically selected.

The vector of histogram bin values is treated as a feature vector and used for classification.

Rather than using a linear combination of all the histogram bins, our methodology first

determines the bins that are most important and most discriminative in classifying the

different facial abnormalities. It then applies genetic programming to find the best way to

combine the discriminative histogram bin values in order to generate a quantification for

each of the different facial abnormalities. Genetic programming (GP) is a method that

follows the theory of evolution by evolving individual computer programs following the

survival of the fittest approach. GP has been used in computer vision by Perez et al. [10],

Torres et al. [11], and Zhang et al.[12].

C. Feature Selection

To determine the histogram bins that are most discriminative in classifying and quantifying

given facial abnormalities, Adaboost learning was used to select the bins that optimized

classification performance. The Adaboost algorithm obtains a strong classifier by combining

a set of weak classifiers with different weights to minimize the classification error. In our

experiments, we used the WEKA [9] implementation of Adaboost learning and selected the

decision stump as the weak classifier, because of its high classification rate in our

preliminary experiments. In addition, we selected a maximum of ten most discriminative

histogram bins for each of the different facial abnormalities. The values of the selected bins

were concatenated into a feature vector for use in both classification and disease

quantification. Figure 3(a) shows the selected bin values of the 2D histogram in Figure 2(b)

highlighted in red. Note that both low and high-valued bins were selected. Figure 3(b) shows

the projection of all of the selected bins in Figure 3(a) back onto the face. Interestingly,

though midface hypoplasia occurs on both sides of the face, the algorithm selected bins

mostly from the right side of the face.

D. Feature Combination

The goal of our work is to quantify the different shape variation that manifests in the

different facial abnormalities. The Genetic Programming (GP) methodology combines and

evolves the values of the selected discriminative histogram bins to produce mathematical

expressions that quantify the shape variation of the different facial abnormalities. The GP

approach starts with assigning the measure of performance, commonly called the “fitness

test” to an individual from a population. In this work, the F-measure is used as the fitness

function to measure the presence of a given facial abnormality. The F-measure is defined as

 where prec and rec are the precision and recall metrics at a

given threshold. The final precision and recall metrics are calculated at the threshold that

maximizes the area under the Receiver Operating Characteristics (ROC) curve. The best

individual in the population is the individual with the maximum F-measure value.

In genetic programming, the genes of an individual program form a tree-like structure with

two different types of genes: functions and terminals. In our approach, the terminal sets are

Atmosukarto et al. Page 3

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the selected histogram bins and the branch nodes are the functions used to combine their

values. The genetic programming method evolves the individuals through a number of set

iterations and selects the individual with the maximum F-Measure. The approach produces

the tree-structure of the best individual, which can be translated into the best mathematical

expression.

IV. Experimental Results

For our experiments, we used the MATLAB implementation of the GP approach called

GPLAB [13]. We empirically tested four different GP function sets and analyzed their

classification performance for each of the facial abnormalities. The four function sets were:

(1) {+, −, *, min, max}, (2) {+, −, *, min, max, sqrt, log2, log10}, (3) {+, −, *, min, max, 2x,

5x, 10x, 20x, 50x, 100x}, and (4) {+, −, *, min, max, sqrt, log2, log10, 2x, 5x, 10x, 20x, 50x,

100}. The last two sets were chosen to introduce weighting, which is not an explicit part of

GP. Table I shows the best and second best performing GP function sets for each of the

facial abnormalities and their respective F-measures. The simplest function sets, (1) and (2),

were selected as the best or second best performing function sets for all nine conditions.

Figure 4 shows the tree structure of the best performing GP function set for quantifying

midface hypoplasia. Preliminary experiments using random subsets of the dataset for cross

validation testing showed that the GP approach was not overfitting the training data, hence

the rest of the experiments were conducted using the whole dataset for generating the tree

structures.

The second experiment was designed to measure the performance of the different facial

region descriptors in classifying individuals to a given facial abnormality. The goal of the

experiments is to classify each individual in the dataset as either affected or unaffected by a

given facial abnormality. We tested two different classifiers, Adaboost and SVM, and are

reporting on the best performing classifier for each facial abnormality. Table II shows the

classification performance for the nine different facial abnormalities for full region

histograms, selected bins only, and the GP expressions over selected bins. For all facial

abnormalities, using the genetic programming approach to quantify and then classify the

facial abnormalities performed the best.

In our third experiment, we compared our region-based results to two global approaches to

representing the face and the various facial features. The first comparison is to a previous

work of representing the whole face using a global saliency map [2]. The second comparison

is to a global approach of representing the whole face, instead of only a specific facial

region, using a 2D histogram of azimuth-elevation angles [1]. Table III shows the

comparison results. It can be seen that using genetic programming quantification to

represent the facial regions achieves a higher classification performance than the global

approaches.

The last experiment was to analyze how the learned genetic programming quantification

performed in predicting 22q11.2 deletion syndrome for individuals in the dataset. In this

experiment, the best performing mathematical expression obtained by the genetic

programming quantification for each of the nine facial abnormalities was evaluated, and the
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resulting values concatenated into a feature vector of dimension nine. The resulting feature

vector was then used to classify the individuals as either affected or unaffected by

22q11.2DS. The F-measure using this quantification feature vector was 0.709 with SVM and

0.721 with Adaboost respectively. However, evolving the resulting concatenated feature

vector with dimension nine using the genetic programming approach obtained a much

higher classification performance of 0.821. Table IV compares the F-measures for predicting

22q11.2 deletion syndrome. The top three rows use the 9-dimensional vector containing the

quantifications of the nine separate abnormalities. Results for the global saliency map [2],

which uses curvature as its low-level feature, as a whole and with Adaboost-learning

selected bins, are shown next. Results for the global 2D histogram of azimuth and elevation

angles (with dimensions 24×24) [1] as a whole and with Adaboost-learning-selected bins,

are given next. Using genetic programming to evolve the Adaboost-learning-selected bins of

both the global saliency map and the global 2D histogram of azimuth and elevation angles

further improved the F-measures. Finally, the median score obtained by our three human

experts is given for comparison. All of the automatic results are improvements over the

median of human experts.

V. Conclusion

This paper has discussed a new methodology for learning 3D shape quantification using a

genetic programming approach and investigated its application in analyzing facial shape

variations in individuals with 22q11.2DS. Experimental results show that using genetic

programming to quantify the different facial abnormalities has the highest classification rate

of any tested approach. Although the focus of this work is on individuals with 22q11.2DS,

we are investigating its application in quantifying other shape conditions associated with

craniofacial dysmorphologies such as deformational plagiocephaly and cleft lip/palate.
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Figure 1.
Different facial regions are selected depending on the facial abnormality being studied: (a)

nose, (b) mouth, and (c) midface.

Atmosukarto et al. Page 7

Proc IAPR Int Conf Pattern Recogn. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
(a) Selected midface facial region of an individual in the dataset. (b) The constructed 2D

histogram of the azimuth and elevation angles of the surface normals of the points in the

selected facial region.
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Figure 3.
(a) Adaboost learning selects the most discriminative histogram bins for classifying midface

hypoplasia (highlighted in red). (b) Positional information about which points in the selected

region contribute to the selected bins for classifying midface hypoplasia (highlighted in

pink).
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Figure 4.
The output of the GP Tree structure of the best performing function set for quantifying

midface hypoplasia. The equivalent mathematical expression can be written as (X7 − X7) +

(X6 − (((X6 + X6) − X7) + (X7 − X2)) + X7) + (X9 − 5X9) + X7 + X7)
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Table I

Best (F1) and second best (F2) performing GP function set for each facial abnormality and their respective F-

measures.

Facial anomaly F1 F-meas. F2 F.meas

Midface Hypoplasia 3 0.8527 1 0.8393

Tubular Nose 4 0.8813 2 0.875

Bulbous Nasal Tip 1 0.8545 2 0.875

Prominent Nasal Root 1 0.8667 3 0.8103

Small Nasal Alae 1 0.8846 3 0.8571

Retrusive Chin 2 0.8000 1 0.7952

Open Mouth 2 0.9714 1 0.9444

Small Mouth 4 0.7750 2 0.7568

Downturned Mouth 1,3,4 0.8000 2 0.7797
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Table II

Classification performance using various facial shape descriptors to classify the nine different facial

abnormalities.

Facial abnormality Rgn Hist Slct Bins GP

Midface hypoplasia 0.697 0.721 0.853

Tubular nose 0.701 0.776 0.875

Bulbous nasal tip 0.617 0.641 0.855

Prominent nasal root 0.704 0.748 0.867

Small nasal alae 0.733 0.801 0.8846

Retrusive chin 0.658 0.713 0.8000

Open mouth 0.875 0.889 0.9714

Small mouth 0.694 0.725 0.7750

Downturned mouth 0.506 0.613 0.8000
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Table III

Comparing the Genetic Programming quantification approach to the global approaches.

Facial abnormality GP Sa. Map Glbl 2D Hist

Midface hypoplasia 0.853 0.674 0.744

Tubular nose 0.875 0.628 0.709

Bulbous nasal tip 0.855 0.616 0.639

Prominent nasal root 0.867 0.663 0.658

Small nasal alae 0.8846 0.779 0.675

Retrusive chin 0.8000 0.628 0.674

Open mouth 0.9714 0.707 0.875

Small mouth 0.7750 0.581 0.752

Downturned mouth 0.8000 0.566 0.630
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Table IV

Classification performance in predicting 22q11.2 Deletion Syndrome.

Method F-measure

Quantification vector with SVM 0.709

Quantification vector with Adaboost 0.721

Quantification vector with GP 0.821

Global saliency map [2] 0.764

Selected bins of global saliency map 0.9

Global 2D histogram [1] 0.79

Selected bins of global 2D histogram 0.9

Selected bins of global saliency map with GP 0.96

Selected bins of global 2D histogram with GP 0.92

Expert’s median 0.68
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