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Abstract

In this paper, we present a method for cup boundary

detection from monocular colour fundus image to help

quantify cup changes. The method is based on anatomi-

cal evidence such as vessel bends at cup boundary, con-

sidered relevant by glaucoma experts. Vessels are mod-

eled and detected in a curvature space to better handle

inter-image variations. Bends in a vessel are robustly

detected using a region of support concept, which au-

tomatically selects the right scale for analysis. A reli-

able subset called r-bends is derived using a multi-stage

strategy and a local spline fitting is used to obtain the

desired cup boundary. The method has been success-

fully tested on 133 images comprising 32 normal and

101 glaucomatous images against three glaucoma ex-

perts. The proposed method shows high sensitivity in

cup to disk ratio-based glaucoma detection and local

assessment of the detected cup boundary shows good

consensus with the expert markings.

1. Introduction

Early detection and treatment of retinal diseases are

crucial to avoid preventable vision loss. Glaucoma is

one of the most common causes of the blindness and

about 79 million in the world are likely to be afflicted

with glaucoma by the year 2020. It leads to irreversible

vision loss due to significant loss of optic nerve fibers.

Retinal nerve fibers converge to the optic disk (OD)

and form a cup-shaped region known as the cup. En-

largement of this cup with respect to OD is an important

indicator of glaucoma progression and hence ophthal-

mologists manually examine the OD and cup for eval-

uation. An automatic assessment of cup region from

colour fundus image (CFI) could reduce the workload

of experts and aid objective detection of glaucoma.

A CFI is a projection of retinal structures on 2D color

plane where OD appears as a bright circular or elliptic

region partially occluded by blood vessels as shown in

fig 1(a). Given the loss of depth information in a CFI,

glaucoma experts use a change in vessel morphology

Fig. 1: a) OD-centric CFI b) Cup boundary through r-bends.

as a reliable visual clue for determining cup boundary.

Thus cup segmentation is a time-consuming and chal-

lenging task. Figure 1(b) shows cup boundary marked

a glaucoma expert using vessel bends (highlighted by

arrows) information.

Much of existing work has mainly focused on OD

segmentation with only few attempts at cup segmenta-

tion. Cup boundary detection has been proposed using

3-D depth information [5]. Since 3-D images are not

easily available, Liu et. al. [3] proposed a cup bound-

ary estimation method using monocular CFI. In this ap-

proach, a potential set of pixels belonging to cup region

is first derived based on the reference colour obtained

from a manually selected point. Next, an ellipse is fit to

this set of pixels to estimate the cup boundary. A variant

of this method obtains the cup pixels via thresholding of

the green colour plane [3]. Cup boundary obtained via

ellipse fitting yields only coarse cup boundary. Further-

more, fixed thresholding is also not adequate to han-

dle large inter-image intensity variations that arise due

to complex imaging and physiological difference across

patients.

In order to address these problems, additional in-

formation such as small vessel bends (’kinks’) which

anatomically mark the cup boundary have been used in

[4]. Here, image patches are extracted around a esti-

mated cup boundary obtained in [3] and vessel pixels

are identified using edge and wavelet transform infor-

mation. Next, vessel bends, characterized by points of

direction change in the vessel pixels are found and used



Fig. 2: The proposed method

to obtain the cup boundary. This method is highly de-

pendent on the preliminary cup boundary obtained from

[3]. Furthermore, the statistical rule for selecting vessel

pixels is very sensitive to the inter-image variations.

Both appearance and anatomical knowledge are used

by the glaucoma expert to determine cup boundary in

different cup regions. Hence, we propose a method

that integrates both information under a common frame-

work. The cup is modeled as a region enclosing pallor

region (shown in fig. 1(a)) and defined by a boundary

passing through a sparse set of vessel bends. In the next

section, we will explain proposed method in detail.

2. Proposed Method

Our objective is to segment the cup region by us-

ing anatomical evidences considered relevant by the ex-

perts. As seen in fig. 1(b) and cyan points in fig. 3(b),

vessel bends can occur at many places within the OD re-

gion. However, only a subset of these points define the

cup boundary. We refer to this as relevant vessel bend or

r-bend. The first problem at hand is to find this subset.

We use multiple source of information for this purpose:

the pallor region which spatially defines the inner limit

of r-bend, bending angle and location in the OD region.

A second problem is that the anatomy of the OD region

is such that the r-bends are non-uniformly distributed

across a cup boundary with more points on the top and

bottom; they are mostly absent in the nasal side and

very few in number in the temporal side. We propose

a local interpolating spline to naturally approximate the

cup boundary in regions where r-bends are absent. Fig-

ure 2 shows an overview of the proposed method. The

energy minimization based deformable models are not

adequate due to absence of certain edge or region based

information associated with the cup region to derive an

energy functional.
Optic Disk Segmentation: The OD region is lo-

calised from red channel of the CFI and morphological-
based pre-processing step is performed to reduce the ef-
fect of vessels within OD. We use the region-based ac-
tive contour approach in [1] for segmenting the OD. The

contour C(s) : [0, 1] → IR2, which is a piecewise pa-

rameterized C1 curve, is evolved using an energy func-
tional defined as

F (c+, c−, C) = µ . Length(C) (1)

+λ+
Z

inside(C)

|I0(x, y) − c+|2dxdy

+λ−
Z

outside(C)

|I0(x, y) − c−|2dxdy

Fig. 3: a) Angle of a vessel bend, b) uniform pallor sam-

ples(red), bend points(cyan) and c) fitted circle(red) and po-

tential r-bends.

where c+ and c− are unknown constants representing
the average value of I0 inside and outside the curve, re-

spectively. The parameters µ ≥ 0 and λ+, λ− ≥ 0;

are weights for the regularizing and the fitting terms,

respectively. For curve evolution, the level set formula-

tion is used where the motion is governed by mean cur-

vature [1]. For further processing steps, we only con-

sider green colour plane of segmented OD region.

Medial axis detection: The OD region has both thick

and thin vessels and due to large inter-image variation,

detecting both kinds is difficult. Hence, we embed the

image in a 3D space and formulate the blood vessel de-

tection as a problem of trench detection in the intensity

surface. The selection of this space gives robustness to

the image variations and detection is solely driven by

trench shape and directional continuity associated with

a vessel structure. Trenches are regions characterized

by high curvature, oriented in a particular direction.

The curvature is computed using surface tangent

derivative [2] defined as: Υ(x) = d2y/dx2

1+(dy/dx)2 . For each

point, Υ is computed in 4 different directions. The max-

imum value of the responses Υmax and corresponding

orientation α (perpendicular to the vessel direction) are

retained and further assessed to obtain trench points. A

point is declared as a trench if value of Υmax is greater

than both threshold value t and the values of neighbor-

ing pixels in α direction.

For the robust detection of low contrast vessels, we

employ a two-phase thresholding scheme in which first,

a high value of t is applied to get high contrast vessel

points (set-1). Then, low value of t is applied to get

a new set of low contrast vessel points (set-2). Points

in set-2 which are found connected to the set-1 are in-

cluded in the final set along with set-1. This strat-

egy helps in successfully extracting low contrast vessels

while rejecting noise. The final trench points give a me-

dial axis based representation of vessel structure which

is more precise in quantifying vessel bends compared

to edge-based representation. The next task is to extract

vessel bends from this representation.

Vessel Bend detection: The amount of bending in

vessels varies according to the caliber of vessel. Thin

vessels show significant bending compared to a thick



vessel. This is due to the fact that thick vessels are

more rigid. The selection of appropriate scale for de-

tecting both types of bend is crucial because bend in a

thick vessel is apparent only at a larger scale compared

to a bend in thin vessel. We employ a dynamic region

of support (ROS) based scheme to find the appropriate

scale to analyse a candidate point.

First, we extract vessel segments terminated by end

and/or junction points. For each segment, we compute

1D shape (curvature) profile and locate the local max-

ima. These local maxima constitute a candidate set of

bends b. A ROS for any bi is defined as a segment of

vessel around bi and bound on either side by the nearest

curvature minimum. Choosing the bounds to be based

on curvature minima automatically ensures the size of

the ROS to be large for thick vessels and small for thin

vessels. The angle of bend θ is then computed as the

angle between the lines joining a bend point and the

centers of mass on both sides of the ROS. The center of

mass of an arm is defined by the mean position of pix-

els on the arm (illustrated in fig. 3(a)). Since only ves-

sels bending into the cup are of interest, bends above

θ = 170◦ are eliminated from the candidate set. The

detected vessel bends in a sample image are highlighted

in fig. 3(b) with cyan markers.

Multi-stage selection of r-bends The task of identi-

fying the r-bends from bi is performed in two stages,

to reduce the required analysis, by utilizing anatomical

knowledge associated with r-bends. In the first stage, a

coarse selection is done based on a bend’s proximity to

the pallor region. In the second stage, the spatial posi-

tion and bending information are used to identify the set

of r-bends.

First stage: Let p : (xp, yp) be a set of points within

the pallor region. These were found by retaining the

top 25% of the bright pixels within the OD. Next, let

b : (xb, yb) be the locations of the bends bi. The re-

gion containing potential r-bends is localised by find-

ing a best-fit circle (in least-square sense) to the set

of points (x, y) = {p, b}. Let the circle have center

(xc, yc) and radius R. The minimisation of error func-

tion S =
∑

i((xi − x̄)− xc)
2 + ((yi − ȳ)− yc)

2 −R2

gives the unknown parameters xc, yc and R, where,

x̄ = 1
n

∑
i xi, ȳ = 1

n

∑
i yi and n number of points.

The bends which lie in the vicinity of this circle (inside

and outside) are passed to the next stage. Figure 3(c)

shows sample candidate r-bends obtained in this stage.

Second stage: Each candidate bend is analysed in

terms of its sector-wise location (as in fig. 3(c)) and

its parent vessel orientation. This analysis is based on

anatomical knowledge that bends formed by vertical

vessels in sec-1&3 and horizontal vessels in sec-2&4

are the probable r-bends. The final refined set of r-bends

Fig. 4: a) Estimated cup boundary, b) final OD and cup bound-

ary.

Fig. 5: Detected cup boundary.

is found as follows: A sector is radially analysed with

a step size of 20◦ and in each step, only bends formed

by vessels with the ′correct′ orientation are retained. If

multiple bends remain, then the bend with smaller value

of theta θ is selected as thin, rather than thick, vessel

bends are more reliable indicators for the cup boundary.

These usually occur in the diagonal region between two

sectors.

2D spline interpolation Typically, r-bends are sparse

and not uniformly distributed across the sectors. In their

absence, experts use their clinical knowledge (experi-

ence of direct 3D cup examination) to approximate a

cup boundary. Hence, it is difficult to get the cup bound-

ary in the regions with no r-bends. We choose a lo-

cal cubic cardinal spline, which is a generalisation of

Catmull-Rom spline, with a shape parameter t. The pa-

rameter t helps control the bending behaviour and thus

the shape according to the sector. The value of t is kept

high in sectors 2&4 as they usually have low vessel den-

sity (r-bends) compared to sector 1&3. A closed-form

2D spline curve is obtained by considering, sequen-

tially, a subset of r-bends. Figure 4(a) shows the inter-

polated cup boundary passing through the r-bends and

Fig. 4(b) shows final obtained boundaries for a sample

OD region.

3. Experimentation Results

The proposed method was evaluated on a dataset of

retinal images collected from an ongoing pilot study in

collaboration with a local eye hospital. The dataset has

32 normal and 101 glaucomatous (total of 133) images.

All images were taken under a fixed protocol with 30-

degree field of view, centered on the OD. For each im-

age, ground truth was collected from three glaucoma

experts, referred to as E1, E2 and E3 with experience of

3, 5 and 20 years, respectively.

Figure 5 shows the detected cup boundary against



Expert-1 Expert-2 Expert-3

Cat/No. µ σ µ σ µ σ
N/32 0.56 0.79 0.23 0.19 0.18 0.28

G/101 0.06 0.20 0.05 0.35 0.03 0.34

Total/133 0.09 0.80 0.09 0.33 0.01 0.34

Table 1: Mean µ and σ in CDR estimation.

three experts on a sample image (overlaid on segmented

OD region). The proposed method successfully detects

r-bends formed on both thick and thin vessel. The cup

boundary at r-bends is closer to the experts’ marked

boundaries (fig. 5(a-2)), whereas in regions where they

are absent the interpolated result is unable to match the

boundary marked by the experts. We observed some

challenging situations where our detected r-bends are

not considered relevant by experts. For instance, in fig.

5(a-1) boundaries marked by experts are away from the

detected r-bends though there was not 2D clue present

to support their markings. These suggest the role of

prior 3D knowledge of the cup being used by an expert

to determine cup boundary.

Traditionally, the cup-to-disk ratio(CDR) in the ver-

tical direction is used to quantify cup enlargement. This

was computed from the obtained boundaries and com-

pared against that from each of the experts. The average

mean µ and standard deviation σ of the CDR error for

32 normal and 101 glaucomatous images is shown in

Table. 1. The method gives less estimation error against

expert-3. The average error µ, σ over all three experts

is 0.323, 0.420 for normal and 0.046, 0.296 glaucoma-

tous images. These figures show that high accuracy

of method in estimating CDR for glaucomatous images

compared to normal image indicating high sensitivity in

glaucoma detection.

The CDR measure is inadequate to assess local cup

changes which is of clinical interest. We examined this

by computing sector-wise cup segmentation accuracy.

An area (pixel) overlap-based method was used to

compute the precision(P)-recall(R) measures to assess

the cup segmentation in each of the 4 sectors. Table 2

shows the sector-wise P and R measure computed over

133 images. These figures indicate that the method

is consistent across four sectors and with an average

precision(0.79) and recall(0.87).

In order to gain some insight into the reasons behind

this performance we analysed the inter observer vari-

ance among the experts by taking E3 with 20 years ex-

perience, as our gold standard. The difference in cup

radius between the gold standard and the experts were

found for each point on the boundary (defined by the

angle α) for all 133 images. These are plotted in fig.

6. It can be seen that on average the variance among

the experts is E1 = 24.06 and E2 = 23.91. This indi-

cates a fair degree of disagreement between experts and

Sec-1 Sec-2 Sec-3 Sec-4

P R P R P R P R

E-1 0.81 0.81 0.74 0.87 0.77 0.89 0.82 0.84

E-2 0.87 0.81 0.82 0.83 0.82 0.85 0.85 0.85

E-3 0.75 0.89 0.72 0.89 0.69 0.94 0.72 0.92

Avg 0.81 0.84 0.76 0.86 0.76 0.89 0.80 0.87

Table 2: Sector-wise precision and recall measures for cup

segmentation.

Fig. 6: Angular cup radius assessment against expert-3.

attests to the complexity of the problem.

4 Discussion and Conclusion

In this paper, we presented a novel cup boundary

detection method using r-bends information. Trench

based vessel modeling and ROS-based bend detection

that have been employed result in robustness to vary-

ing thickness of the vessels. Final cup boundary is ob-

tained using applying local spline interpolation on the

detected r-bends. Assessment results show that our

method matches quite well with the most experienced

expert’s assessment. At a local level, the segmentation

P/R figures are 0.79/0.87. It is observed that in the re-

gions with no certain 2D clues, there is less consensus

on the cup boundary between our method and experts

and also within experts. This signals the ambiguity in

2D information and the importance of 3D information

in cup segmentation which will be investigated in our

future work.
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