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Abstract

The goal of this paper is the development of a novel
approach for the problem of Noise Removal, based
on the theory of Reproducing Kernels Hilbert Spaces
(RKHS). The problem is cast as an optimization task in
a RKHS, by taking advantage of the celebrated semi-
parametric Representer Theorem. Examples verify that
in the presence of gaussian noise the proposed method
performs relatively well compared to wavelet based
technics and outperforms them significantly in the pres-
ence of impulse or mixed noise.

1 Introduction

The problem of noise removal from a digitized im-
age is one of the most fundamental ones in digital im-
age processing. So far, various techniques have been
proposed to deal with it. Among the most important
methodologies are, for example, the Wavelet-based im-
age denoising methods, which dominates the research
in recent years [2, 3]. In this paper we propose a novel
approach which (to our knowledge) has not been con-
sidered before. We employ the well known powerful
tool of kernels.

In kernel methodology the notion of the Reproduc-
ing Kernel Hilbert Space (RKHS) plays a crucial role.
A RKHS, is a rich construct (roughly, a smooth space
with an inner product), which has been proven to be a
very powerful tool for non linear processing [9, 11]. In
the denoising problem, we exploit a useful property of
RKHS, therepresenter theorem[9]. It states that the
minimizer of any optimization task inH, with a cost
function of a certain type, has a finite representation in
H. We recast the image denoising problem as an opti-
mization task of this type and use the semi-parametric
version of the representer theorem. The latter, allows

for explicit modeling of the edges in an image. In such
a way we can deal with the smoothness which is, im-
plicitly, imposed by the "smooth" nature of RKHS.

Though there has been some work exploring the use
of kernels in the denoising problem, the methodology
presented here is fundamentally different. In [10], the
notion of kernel regression has been adopted. The orig-
inal image is formulated as a Taylor approximation se-
ries around a center,xi, and data adaptive kernels are
used, as weighted factors, to penalize distances away
from xi. In a relatively similar context, kernels have
been employed by other well known denoising meth-
ods (such as [1]). Kernels were also used in the context
of RKHS in [6, 5]. However, the obtained results were
not satisfying, especially around edges. It is exactly this
drawback that is addressed by our method.

2 Mathematical Preliminaries

We start with some basic definitions regarding
RKHS. LetX be a non empty set withx1, . . . ,xN ∈
X . Consider a Hilbert spaceH of real valued functions
f defined on a setX , with a corresponding inner prod-
uct 〈·, ·〉H. We will call H as aReproducing Kernel
Hilbert Space- RKHS, if there exists a function, known
as kernel,κ : X × X → R with the following two
properties:

1. For everyx ∈ X , κ(x, ·) belongs toH.

2. κ has the so calledreproducing property, i.e.
f(x) = 〈f, κ(x, ·)〉H, for all f ∈ H. In partic-
ularκ(x,y) = 〈κ(x, ·), κ(y, ·)〉H.

In can been shown that the kernelκ produces the en-
tire spaceH, i.e. H = span{κ(x, ·)|x ∈ X}. There
are several kernels that are used in practice (see [9]). In
this work, we focus on one of the most widely used, the
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Gaussian Kernel:

κ(x,y) = exp

(

−‖x− y‖2
2σ2

)

, σ > 0,

due to some additional properties that it admits.
One of the many powerful tools in kernel theory is

the application of the semi-parametric representer theo-
rem toregularized risk minimizationproblems (see [9]):

Theorem 2.1. Denote byΩ1,Ω2 : [0,∞) → R, two
strictly monotonic increasing functions, byX a set and
by c : (X × R

2)m → R ∪ {∞} an arbitrary loss func-
tion. Furthermore, consider a set ofM real-valued
functions{ψk}Mk=1

: X → R, with the property that
theN ×M matrix (ψp(xn))n,p has rankM . Then any
f̃ := f + h, with f ∈ H and h ∈ H = span{ψk},
minimizing the regularized risk functional

c ((x1, z1, f(x1)), . . . , (xN , zN , f(xN ))

+ Ω1 (‖f‖H) + Ω2 (‖h‖H)

admits a representation of the form

f̃(x) =

N
∑

n=1

αnκ(xn,x) +

M
∑

k=1

βkψk(x). (1)

Usually the regularization termΩ(f) takes the form
Ω(f) = 1

2
‖f‖2

H
. In the case of the RKHS produced by

the gaussian Kernel we can prove that

‖f‖H =

∫

X

∑

n

σ2n

n!2n
(Onf(x))2dx, (2)

with O2n = ∆n and O2n+1 = ∇∆n, ∆ being
the Laplacian and∇ the gradient operator (see [9]).
Thus, we see that the regularization term "penalizes"
the derivatives of the minimizer. This results to a very
smooth solution of the regularized risk minimization
problem.

Note that according to theorem 2.1 the model of a
function has two parts, one lying in the smooth RKHS
space and another parth which gives rise to the second
term in the expansion (1). It is exactly this term that
is exploited by our method in order to explicitly model
edges.

3 Application to the denoising problem

Let f be the original image and̂f the noisy one (we
consider them as continuous functions). Also, letfi,j
andf̂i,j be the restrictions off andf̂ on theN ×N or-
thogonal region centered at the pixel(i, j) of each im-
age accordingly (N is an odd number). Our task is to
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Figure 1. Two of the functions ψk that are
used to represent edges.

find fi,j from the given samples of̂fi,j. For simplicity,
we drop thei, j indices and considerfi,j andf̂i,j (which
from now on will be written asf and f̂ ) as functions
defined on[0, 1]2 (and zero elsewhere). The pixel val-
ues of the digitized image are given byf(xn, ym) and
f̂(xn, ym) wherexn = n/(N − 1), ym = m/(N − 1)
for n,m = 0, 1, . . . , N − 1.

We consider a set of real valued functions{ψk, k =
1, . . . ,K} with two variables suitable to represent
edges; i.e., bivariate polynomials (which are controlled
by the coefficientsh0, h1, h2, h3) and functions of the
form Erf(a · x + b · y + c), where Erf is the error func-
tion,

Erf(x) =
2√
π

∫ x

0

e−t2dt,

for several suitable choices ofa, b and c (see figure
1). Thus we formulate the regularized risk minimiza-
tion problem as follows:

minimize
f∈H, β∈RK , h∈R4

N−1
∑

n=0

M−1
∑

m=0

∣

∣

∣
f(xn, ym) + h0 + h1xn+

+ h2ym + h3xnym +

K
∑

k=1

βkψk(xn, ym)− f̂(xn, ym)
∣

∣

∣

+
λ

2
‖f‖2H +

µ

2

K
∑

k=1

|βk|2 +
µ1

2

3
∑

l=1

h2l . (3)

Taking a closer look at the termλ
2
‖f‖2

H
according

to equation (2), one sees that we actually penalize
the derivatives off in a more influential fashion than
the total variation scheme, which is often used in
wavelet-based denoising and penalizes only the first or-
der derivatives. It turns out that in our method the use of
theL1 norm in the cost function, in combination with
regularization, results in sparse modeling with respect
to theβ coefficients. It should be noted that the use of
theL1 norm, also, in the regularization term leads to
similar results.

The semi-parametric theorem 2.1 ensures that the



Table 1. Results on Boat corrupted by impulse noise.
Image Noise noisy PSNR Kernel Denoising BiShrink [2] K-SVD [4] SKR L1 [10] SKR [10] BM3D [3]

Boat

20% 18.56 dB 32.36 dB 22.59 dB 26.46 dB 31.85 dB 28.35 dB 29.45 dB
30% 16.77 dB 30.66 dB 25.07 dB 26.79 dB 30.85 dB 27.05 dB 28.29 dB
40% 15.52 dB 29.14 dB 25.40 dB 26.08 dB 29.51 dB 25.85 dB 27.26 dB
50% 14.55 dB 28.10 dB 25.09 dB 25.38 dB 27.73 dB 24.90 dB 26.61 dB

Table 2. Results on Lena corrupted by gaussian noise.
Image Noise noisy PSNR Kernel Denoising BiShrink [2] BLS-GSM [8] K-SVD [4] SKR L1 [10] SKR [10] BM3D [3]

Lena
s = 10 28.12 dB 33.98 dB 34.33 dB 35.60 dB 35.47 dB 32.66 dB 35.32 dB 35.93 dB
s = 20 22.14 dB 31.12 dB 31.17 dB 32.65 dB 32.36 dB 29.23 dB 32.62 dB 33.00 dB
s = 30 18.72 dB 29.11 dB 29.35 dB 30.50 dB 30.30 dB 26.60 dB 30.71 dB 31.21 dB

minimizer will have a finite representation of the form:

f̃(x,y) =
N−1
∑

n=0

M−1
∑

m=0

αn,mκ((xn, ym), (x, y))+

+

M
∑

k=1

βkψk(x, y) + h0 + h1x+ h2y + h3xy.

We can solve this problem using Polyak’s Projected
Subgradient Method [7]. We fix the regularization pa-
rameterλ and adjustµ andµ1 so that they take small
values around edges and large values in smooth areas.
In particular, as the algorithm moves from one pixel
to the next, it decides whether the corresponding pixel
centered region contains edges or not using the mean
gradient of the specific region and then, it solves the
corresponding minimization problem.

4 Experimental Results

Figure 2 and tables 1, 2 show the obtained re-
sults using our algorithm on the Lena and Boat
(512 × 512) grayscale images. More experimental re-
sults, the code in C (for the proposed methodology), as
well as details on the implementation may be found at
http://cgi.di.uoa.gr/~stheodor/ker_den/index.htm.
The results were compared with those obtained us-
ing several state of the art wavelet-based denois-
ing packages, which are available on the internet
([3, 10, 4, 1, 2]). The experiments show that the kernel
approach performs equally well as the well-known
BiShrink wavelet-based method [2] in the presence of
Gaussian noise. However, it outperforms significantly
the other denoising methods when impulse noise
or mixed noise are considered (see figure 2). This
enhanced performance is obtained at the cost of higher
complexity, which is basically contributed by the
optimization step, which is of the order ofO(MN) per
pixel. Currently, more efficient optimization algorithms
are considered. Moreover, the whole setting is open
to a straightforward parallelization, when a parallel
processing environment is available. This is also
currently under consideration.

5 Conclusions

A novel denoising algorithm was presented based
on the theory of RKHS. The semiparametric Represen-
ter Theorem was exploited in order to cope with the
problems associated with the smoothing around edges,
which is a common problem in almost all denoising
algorithms. The comparative study against other de-
noising techniques, showed that significantly enhanced
results are obtained in the case of impulse noise and
mixed noise.
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Figure 2. (a) Original Image, (b) Original with additive Gaussian Noise - PSNR=22.14 dB, (c) Wavelet BiShrink Denoising [2] -
PSNR=31.17 dB, (d) Kernelized Denoising - PSNR=31.12 dB, (e) Original Image, (f) Original with additive Impulse Noise - PSNR=15.52
dB, (g) BM3D Denoising [3] - PSNR=27.26 dB, (h) Kernelised Denoising - PSNR=29.14 dB.
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