
Detection Based Low Frame Rate Human Tracking 

Lu Wang, Nelson H.C. Yung 
Department of Electrical and Electronic engineering  

The University of Hong Kong 
Hong Kong, China 

{wanglu, nyung}@eee.hku.hk 
 
 

Abstract—Tracking by association of low frame rate detection 
responses is not trivial, as motion is less continuous and hence 
ambiguous. The problem becomes more challenging when 
occlusion occurs. To solve this problem, we firstly propose a 
robust data association method that explicitly differentiates 
ambiguous tracklets that are likely to introduce incorrect linking 
from other tracklets, and deal with them effectively. Secondly, we 
solve the long-time occlusion problem by detecting inter-track 
relationship and performing track split and merge according to 
appearance similarity and occlusion order. Experiment on a 
challenging human surveillance dataset shows the effectiveness 
of the proposed method. 

Keywords- low frame rate tracking, data association, 
ambiguous tracklets, long time occlusion 

I.  INTRODUCTION  
Robust tracking of objects is an important task in video 

surveillance, which serves as input to high level objects 
behavior analysis. In many applications, due to the need to 
reduce the video size for communication and storage, or to 
be cost efficient, tracking in low frame rate (LFR) is 
preferred [1]. However, most existing methods cannot be 
readily applied to LFR tracking because motion is disjoint 
with a degree of ambiguity. In this paper, we propose a 
method to associate object detection results into trajectories 
for LFR tracking. 

In data association, researchers tried various means to 
increase its robustness. [2] proposed a hierarchical 
framework to progressively resolve the association 
ambiguity as more information is collected. [3] adapts the 
weight that multiple cues are combined so as to enhance the 
discriminative power of the association model in its 
neighborhood by solving a regression problem. [4] 
automatically selects features and their corresponding 
models for association by learning with HybridBoost. In 
this paper, we propose to improve the linking robustness in 
LFR tracking by detecting tracklets that introduce either 
motion or appearance ambiguities. 

The framework of generating tracklets first and then 
linking them by optimization is effective, because the 
search space for optimization can be reduced significantly 
without sacrificing much of the accuracy. Typically, 1st-
order Markov Chain (MC) assumption is made [2, 4, 5], i.e. 
the link probability of one tracklet Ti to another tracklet Tj is 
independent of other tracklets. However, in LFR tracking, 

this assumption does not hold for a certain amount of 
tracks, due to the existence of short tracklets, which 
introduce motion ambiguity because of their lacking of 
motion prediction probability [Fig 1 (a)]. In addition, when 
occlusion occurs, the assumption does not hold either, 
because the appearances of the detections from the 
occlusion parts are similar to both two related tracks 
introducing appearance ambiguity, i.e. [Fig. 1 (b)]. The 
ambiguity can be resolved if three tracklets are considered 
simultaneously by using 2nd-order MC. However, as 2nd-
order MC is very complicated, to efficiently solve this 
problem, we propose a method that minimizes the use of 
2nd-order MC by specifically detecting and dealing with 
ambiguous tracklets and approximates 2nd-order MC only 
when it is unavoidable.  

 

 
(a) 

 
(b) 

Figure 1.  Wrong association caused by ambiguous tracklets. Green and 
blue circles represent the detection responses of two human objects 
respectively; red circles are where occlusions occur and the two human 
objects are mistakenly detected as one; numbers in circles are frame 
indices; red lines represent incorrect associations. 

 

Long-time occlusion is another issue to deal with. [2] 
solved the problem by filling the gap between tracklets. 
However, it fails if the gap is too long, or if only one end of 
a track is not complete, i.e. there is no gap to fill. [5] solved 
the problem by performing split-and-merge during tracklets 
linking. We found that in human surveillance applications, 
long-time occlusion mostly occurs when human objects are 
walking together. Therefore, we introduce a track split-and-
merge method by measuring inter-track distance in the 
spatio-temporal space and then merge the tracks, or re-
associate the detections to the tracks, according to 
appearance similarity.   

The rest of the paper is organized as follows: in Section 
II, the proposed LFR data association method is elaborated; 
Section III talks about how we deal with long-time 
occlusions; experimental results on a challenging human 
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surveillance dataset is given in Section IV; and conclusion is 
drawn in Section V. 

II. THE PROPOSED METHOD 

A. Tracklets generation 
We first applied our model based method [6] to detect 

individual human objects and then generate tracklets by 
linking single responses using the two-threshold strategy 
proposed in [2]. Link probability is defined as the product of 
position and appearance affinity. The position affinity is 
similar to that defined in [7], whereas our appearance 
affinity of two detection responses ri and rj is defined as 
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where, pt denotes the body part and h, t and l represent head, 
torso and legs respectively; VRi, pt is the ratio of the number 
of visible pixels of body part pt of ri to the whole body size; 
ai,pt is the 8×8×8 RGB color histogram of part pt of ri; and 
BC(ai, aj) calculates the Bhattachayya coefficient of the two 
histograms. 

B. Ambiguous tracklets detection 
We define two types of ambiguous tracklets. The first 

type are tracklets having single response. The second type 
are tracklets having more than one tracklets compete to link 
to them. Formally, the second type tracklets are defined as: 
If p(Tk|Ti)>θ1 and p(Tk|Tj)>θ1 (both are potential links), 
|p(Tk|Ti) - p(Tk|Tj)|<θ2 (but the difference is not significant), 
Ti and Tj have temporal intersection (i.e. they have at least 
one detection from the same frame respectively and 
therefore they cannot be linked to Tk simultaneously), there 
does not exist any tracklet Tl for Ti (or for Tj) such that p(Tl | 
Ti)> θ1 (or p(Tl | Tj)> θ1 ) and Tl and Tk have temporal 
intersection(if there exists such a tracklet Tl, the ambiguity 
can be resolved by the Hungarian algorithm), then Tk is 
defined as an ambiguous tracklet. This is the two-versus-
one case and, we can define the one-versus-two case 
similarly. 

C. Tracklets Linking 
We propose to link the reliable tracklets first, then, fill 

missed detections in the resulting tracks with ambiguous 
tracklets, and lastly perform the complete linking by 
approximating the 2nd-order MC. All the linking and filling 
of ambiguous tracklets into tracks are formulated into a 
MAP framework and solved by the Hungarian algorithm, as 
is done in [2]. Due to the space limitation, readers are 
referred to [2] for the formulation details and how 
Hungarian algorithm is applied to perform data association. 

Similar to [2], the link probability plink is defined as the 
product of three components: appearance, motion and time. 
Unlike [2], we calculate the appearance of part pt of a 
tracklet Ti by 
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where n is the tracklet length. The appearance link 
probability Aa(Tj|Ti) is then calculated by (1) by replacing 
the apperance and visible ratio of single detections with 
those of tracks. and the visible ratio of a track is calculated 
by  the right side of (2) by replacing ak,pt with VRk,pt. 

To calculate motion affinity, because the prediction 
ability of short tracklets is easy to be affected by inaccurate 
localization (as shown in Fig. 2), we have to modify it for 
LFR tracking. For longer tracklets, as Kalman smoothing is 
applied on the tracklets, the motion affinity becomes more 
reliable. We define motion affinity Am(Tj|Ti) as a weighted 
sum of velocity affinity and orientation affinity as follows. 
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where Am,v(Tj|Ti) is the velocity affinity and Am,o(Tj|Ti) is the 
orientation affinity; iT~  represents the time inversed Ti; 

tail
ip (or head

ip ) are the filtered real world position of the tail 
(or head); tail

iv  is the estimated tail velocity of Ti; tail
io (or 

head
io ) are the estimated tail (or head) orientation of Ti, vmax 

is the upper bound of a human object's normal walking 
velocity; η is a factor penalizing long gap between very 
short tracklets. In (3), we take tracklets that are shorter than 
3 as short tracklets and do not require their velocity 
prediction accuracy. The orientation prediction ability for 
tracklets of length two is still used, because generally the 
orientation, although not accurate, is informative and would 
not lead to linking errors. 

 
Figure 2.  Illustration of unreliable motion prediction of very short 
tracklets. Due to the inaccurate localization of the response in frame i+3 of 
the object represeted by blue circles, incorrect linking occur. In such case, 
motion affinty should be less counted and more emphasis should be put on 
appearance affinity. 

For the temporal affinity calculation, as it aims to 
differentiate if a gap should be filled or not, we not only 
exempt the penalty for missed detections caused by 
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occlusion, but also missed detections where the appearance 
at the interpolated position is similar to both of the tracklets 
in consideration.  

1) Reliable tracklets linking  
When linking the reliable tracklets, we neglect those 

ambiguous tracklets so as to avoid incorrect linking. This 
procedure is useful in two folds: first, the linking of the 
remaining reliable tracklets becomes more robust; second, 
the speed of calculating the optimal linking is accelerated. 
The result of this step is illustrated in Fig. 3 (a1) and (b1).  

2) Inserting ambiguous tracklets  
In this step we fill missed detections of the tracks 

generated in the last step with ambiguous tracklets. If Ti and 
Tj are directly linked, but sfj - efi > 1 (sfi and efi represent the 
start frame index and end frame index of Ti respectively), 
then there are missed detections in this track. The link 
probability pfill is defined as: for any two tracklets Ti and T j, 
pfill (Tj|Ti)=0 if Ti and Tj are reliable tracklets but not directly 
linked; otherwise pfill (Tj | Ti) = plink (Tj | Ti). It is 
straightforward to restrict that if Ti and Tj are directly linked 
reliable tracklets, pterm_fill(Ti)=0 (probability of Ti to be an 
termination end) and pinit_fill(Tj)=0 (probability of Tj to be an 
initialization end).  

After obtaining the optimal insertion using the 
Hungarian algorithm, we might have some incompatible 
links, i.e. reliable tracklets Ti and Tj are originally directly 
linked but they are not in the same track after this insertion 
linking. In this case, we perform a local optimization by 
breaking the incompatible links and taking Ti as the start 
tracklet, Tj as the end tracklet, and then using the Hungarian 
algorithm to link them with the ambiguous tracklets that are 
not assigned to any other tracks. The result after insertion is 
illustrated in Fig. 3 (a2) and (b2). 

 
Figure 3.  Illustration of the proposed method. (a1) and (b1): reliable 
tracklets linking; (a2) and (b2): insertion of ambiguous tracklets 

3) Approximating 2nd-order MC.  
In this step, ambiguous tracklets that are not inserted into 

tracks in the last step are linked to tracks. Most of these 
tracklets are extensions to the tracks already formed. As 
majority of the tracklets have been linked in the previous 
two steps, the scale of the optimization problem becomes 
much smaller in this step and we are able to approximate 

2nd-order MC without introducing much computational cost. 
We first do the 1st-order MC linking as is done above, then 
determine whether there are ambiguous tracklets whose two 
ends are linked simultaneously: if yes, as this kind of linking 
may introduce errors, for each such tracklet, break the link at 
the end with lower link probability; then continue the linking 
and breaking process until there are no further breaks. 

III. DEALING WITH INCOMPLETE TRACKS CAUSED BY 
LONG-TIME OCCLUSION 

This section aims to solve the long-time occlusion. We 
deal with it after tracklet association by detecting objects 
moving together. The argument is that, usually, if people 
are not walking together, occlusion tends to last only a short 
while. But if people are walking together, once occlusion 
occurs, its period tends to be long because they move in the 
same pattern and the occlusion state is unlikely to change 
within a short time. Define sfi,j=max(sfi, sfj) and efi,j = 
min(efi, efj). The distance between two tracks Ti and Tj is 
calculated by 
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where pi,f is the filtered position of detection response of Ti 
in frame f. If D(Ti, Tj) is smaller than a threshold and the 
two tracks' coexistent part is long enough, i.e. efi,j -sfi,j>=Tf, 
human objects represented by the two tracks are considered 
as walking together.  

For each pair of such walk-together tracks, say T1 and T2, 
as illustrated in Fig. 4, we merge them. Suppose T1 has an 
extra part than T2 w.r.t. temporal length. Appearance of each 
detection in the extra part of T1 is compared respectively to 
the single detection appearances of T1 and T2 from frames 
where both tracks have detection responses to support. If the 
appearance similarity to T2 is higher than that to T1 for a 
certain amount, the detection is assigned to T2, and thus 
extends T2. Otherwise, as no more detection can be assigned 
to T2, we decide if T2 occludes T1 or T1 occludes T2 by 
comparing the two tracks' distances to the camera. The track 
with shorter distance to the camera occludes the other one. If 
T2 is occluded by T1, its missing end is merged into T1; if T2 
occludes T1, T2 is left as it is. Further, if a track is merged 
with other two tracks and those two tracks originally have no 
temporal intersection, their appearances are compared: if the 
appearance similarity is high enough, they are identified as 
the same human object. 

 
(a)                                                           (b) 

Figure 4.  Illustration of walking-together tracks: (a) long track occludes 
short track; (b) short track occludes long track. 
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IV. EXPERIMENTAL RESULT 
The proposed method is tested on a challenging dataset, 

which consists of 10 video sequences, with the resolution 
being 480 × 640 and the frame rate being 2 frames per 
second. Each sequence contains 100 frames and there are 
totally 571 trajectories. Fig. 5 gives an illustration of the 
scene and the human detection and tracking result. We 
manually marked our region of interest, which is the central 
area of the ground, and neglect the detected human objects 
falling out of the region. The false alarm and missed 
detection rates of our human detection result are 12.1% and 
15.8% respectively.   

 

  
 

(a) Human detection result 
 

 
 

(b) Associated trajectories 

Figure 5.  Illustration of the scene and the detection and association result. 

TABLE I.  EVALUATION OF DATA ASSOCIATE RESULTS 
 

 tracklets without 
DAT 

with 
DAT 

deal with 
occlusion 

MOTA 0.532 0.747 0.773 0.795 
 

 
Figure 6.  Illustration of association results. (a1) and (a2): result without 
dealing with ambiguous tracklets; (b1) and (b2): result of the proposed 
method. 
 

The metric MOTA proposed in [8] is applied to evaluate 
the association result. Table I lists the scores of the original 
tracklets, applying the Hungarian algorithm without 
differentiating ambiguous tracklets (DAT), the proposed 
method before/after dealing with long-time occlusion.  

Fig. 6 demonstrates two associated trajectories generated 
without and with dealing with ambiguous tracklets. We can 
see that, although occlusion happens frequently, identity 
switch is effectively avoided by the proposed method. 

In addition, though the proposed method applies the 
Hungarian algorithm for several times, for the tested data, it 
is between 4-10 times faster than that without dealing with 
ambiguous detection. This is because the proposed method 
can be regarded as a decomposition of the link probability 
matrix, which effectively reduces the coupling among data. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we propose to differentiate reliable and 

ambiguous tracklets when perform LFR data association. 
Experimental results on a challenging human surveillance 
dataset shows its effectiveness. The drawback of the 
method is that if there are too many ambiguous tracklets 
and too few reliable tracklets, the method might fail 
because too much information is neglected and other 
methods have to be developed. Our future work is to use the 
tracking information to improve the single frame detection 
accuracy and then refine the tracking accuracy again. 
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