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Abstract

In this paper, we present a calibration-free head ges-
ture recognition system using a motion-sensor-based
approach. For data acquisition we conducted a compre-
hensive study with 10 subjects. We analyzed the result-
ing head movement data with regard to separability and
transferability to new subjects. Ordered means models
(OMMs) were used for classification, since they provide
an easy-to-use, fast, and stable approach to machine
learning of time series. In result, we achieved classifi-
cation rates of 85–95% for nodding, head shaking and
tilting head gestures and good transferability. Finally,
we show first promising attempts towards online recog-
nition.

1. Introduction

Human head gestures are an important communi-
cational cue. Munhall et. al. [5] showed that head
movements even improve the perception of syllables
in Japanese. Although there is no such evidence for
other languages, it seems useful to equip virtual agents
and social robots with appropriate head gestures [1] to
make conversation with them more lifelike.

To equip an agent with head gestures performed at
appropriate timing it is necessary to investigate these
gestures during human-human interaction. For this re-
search, typically video data are annotated manually.
This laborious process can be dramatically facilitated
by a combination of machine-learning methods with a
tracking technique. Possible techniques are detailed by
Vatavu et. al. [7] who claim that vision-based approaches
(e.g. [4]) have the advantage that the measurements can
be done unobtrusively but are dependent on constant

lighting conditions and on a full view at the interlocu-
tor’s face. Moreover, high processing power is needed.
For this reason, our approach is sensor-based. We use
motion sensors mounted on the subject’s head, which
grant lighting independence and almost unrestricted mo-
bility. The practical issue in this context is the easy
applicability of our system without any calibration.

To examine the possibilities of such a sensor-based
head gesture recognition system, we accomplished a
comprehensive study with 10 subjects in comparatively
natural setups. Thereby, we abdicated any sensor prepa-
rations and adjustments. Subsequently, we analyzed the
recorded data with regard to separability and transferabil-
ity, where we use a new approach to machine learning of
time-series and sequences, the so-called ordered means
models (OMMs). OMMs can be described as rigorously
reduced versions of the well-known and widely-used
hidden Markov models (HMMs) [6]. While achieving
similar generalization properties, OMMs provide a high
level of robustness in terms of fragmented or insuffi-
cient data and, additionally, need less computational
power [2].

2. Ordered Means Models

Similar to HMMs, an OMM Ω can be characterized
as a generative state-space model that emits a sequence
of observation vectors O = o1..oT , ot ∈ Rd out of K
hidden states. In opposite to HMMs, OMMs establish
some restrictions: (i) OMMs are defined without any
transition probabilities. Instead, each path q through
the model, i.e. each combination of states, is equally
likely. (ii) The emissions of each state are modeled
as probability distributions bk(ot) and assumed to be
Gaussian with bk(ot) = N (ot; µk, σ). The standard de-
viation σ is identically in all states and used as a global



Figure 1. Scenario for data acquisition. Both
interacting subjects are wearing a head mo-
tion sensor.

hyperparameter. (iii) The model topology of OMMs
is similar to the so-called left-to-right topology known
from HMMs where only self transitions and transitions
to subsequent states are allowed. Applying these re-
strictions, the only parameters left are the location pa-
rameters of the emission densities µk. Therefore, an
OMM is completely defined by a linear array of refer-
ence vectors Ω = [µ1..µK ]. To estimate the parameters
of an OMM by a set of observed example sequences
O = {O1, .., ON}, we use a Baum-Welch training pro-
cedure similar to HMMs. Note that with σ → 0 the
training changes towards the Viterbi algorithm [2].

To use OMMs for classification in a maximum likeli-
hood framework, one model Ωi is trained for each class
i. An unknown sequence O then is assigned to the class
k = arg maxi p(O|Ωi), whose model yields the highest
posterior probability (see Rabiner [6]). A more detailed
introduction to OMMs and algorithmic details can be
found in Großekathöfer et al. [2].

3. Dataset and Experiments

The experimental data was recorded using an Xsens
MT9 inertial sensor1 (using only the gyroscopes with
3 DoF rate-of-turn). With this sensor attached to the
top of the subjects’ heads, we recorded the head move-
ments of 10 subjects during dyadic conversation (see
Figure 1). All subjects were German native speakers
and briefly informed about the purpose of the data ac-
quisition. The conversation was video-taped by a scene
camera and stopped when it became stagnant. We syn-
chronized the sensor data with the scene camera video
and annotated the head movements in ELAN [3]. All

1www.xsens.com

Number of Events for

S Nod Shake Tilt Look length dur

1 27 17 0 2 0.98s 11 m
2 22 14 0 2 1.1s 11 m
3 33 1 0 0 1.39s 15 m
4 22 1 4 3 1.09s 15 m
5 35 67 2 37 1.4s 33 m
6 27 38 6 26 1.2s 33 m
7 77 81 15 47 1.46s 27 m
8 15 16 1 49 1.04s 27 m
9 122 37 13 65 1.42s 43 m
10 67 33 3 79 1.17s 43 m∑

447 305 44 310

Table 1. Number of head movement sam-
ples per subject. S: subject number, length:
medium length of event (in seconds), dur:
overall duration of the measurement (in min-
utes).

weak annotations (not reliably assignable gestures) were
then left out and the head motion data was sliced into
segments relating to the four most frequently occurring
head movement annotations: nod, shake, tilt (occurred
as a gesture of uncertainty) and look (sideways). Table
1 gives an overview of the resulting samples. All data
were recorded at 33Hz and normalized to zero-mean and
unit variance.

To estimate the accuracy of OMMs for head gesture
recognition, we tested these four head movement classes
with two different evaluations based on the obtained
dataset. The first evaluation tested whether the classi-
fier is suitable and robust for this kind of data. For this,
we randomly partitioned all available data into equally
sized training and test sets. In a second evaluation, we
investigated the classifiers’ transferability to new sub-
jects. Thus, we used data captured from 9 subjects as
training data while the data from the remaining subject
was used as test data (test subject). We accomplished
this evaluation for each subject. Furthermore, to analyze
the mutual influence of head movement classes on the
performance, we repeated both evaluations four times,
each time with a different set of head gesture classes.
Since nod and shake were the most frequently occurring
head movements, every set included these two gestures:
(a) nod, shake (b) nod, shake, tilt (c) nod, shake, look
(d) nod, shake, look, tilt.

We applied a uniform procedure to all data sets:
First, we estimated an appropriate hyperparameter for
each method by the means of 5-fold cross valida-



Figure 2. This figure shows the classification
rates for all ten subjects from Evaluation 2.
Note that the connection of the dots does not
indicate interim values.

tion on the training data. We chose 8 different val-
ues for the number of OMM states K with K ∈
{5, 10, 15, 30, 45, 70, 90, 110}. The set of values for
the global standard deviation σ was equal for all data
sets with σ ∈ {0, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5, 2, 3}.
Subsequently, we took the best hyperparameters found in
this process to train OMM classifiers with the complete
training data set. To obtain the test set classification rate,
we applied the resulting classifiers to the prepared test
data set.

4. Results

The results of the first evaluation reveal classification
success rates between 86.36% and 97.48% (see Table 2).
The best rate was achieved when nod and shake were
used as trained head gestures, whereas the lowest rate
occurred when all four classes were used. For the case
of three trained classes, there are two different results
depending on the third added class: the addition of tilt re-
sults in a classification rate of 95.32%, while the addition
of look results in a classification rate of 87.90%2.

The classification rates from the second evaluation,
which are weighted averages over all subjects, range
from 75.95% to 98.40% (Table 2 last column). Here
again, the best rate was achieved with two classes (nod
and shake), and the lowest rate occurred when all four
gesture classes were used. In order to examine the mu-
tual influence of all four gesture classes, we generated an
overall confusion matrix (see Table 3). This matrix is the
sum of the confusion matrices of all 10 runs. Samples on
the diagonal are classified correctly. While most samples
for nod, shake and tilt are classified correctly, it can be
observed that, for the look class, the number of correct

2Note that random classification yields 25% accuracy with 4
classes, whereas 2 classes reach 50% by chance.

Classification rates

Trained head gestures Evaluation 1 Evaluation 2

(a) nod, shake 97.48% 98.40%
(b) nod, shake, tilt 95.32% 94.82%
(c) nod, shake, look 87.90% 79.49%
(d) nod, shake, look, tilt 86.36% 75.95%

Table 2. Classification rates from Evaluation 1
and 2.

real gesture classified gesture performance

nod shake tilt look

nod 405 6 20 16 90.60%
shake 10 260 7 28 85.25%
tilt 2 4 36 2 81.82%
look 12 132 27 139 44.84%

Table 3. Confusion matrix from Evaluation 2
with all 4 gesture classes accumulated over all
10 subjects. Samples on the diagonal are clas-
sified correctly.

classified samples per class is considerably lower. More
precisely, 132 of 310 look samples have been mistakenly
accounted to the shake class.

Figure 2 shows the classification rates for the head
gesture class sets per subject. The rate ranged from
61.76% to 100%, where the class set (a) with nod and
shake achieved the best performance results again. Sim-
ilarly to the first evaluation, the system reached very
high accuracy with class set (b) for almost all subjects.
The classification rates fall off for both class sets that
include the look class. Subject 3 seems to provide the
most difficult data for classification.

5. Online classification capability

To expand the proposed system to online classifica-
tion some extensions have to be applied. First of all,
to process a continuous head motion data stream from
the sensor we partition the data via a sliding window
approach into fragments. Additionally, we establish a
rejection scheme in case no head gesture is performed:
based on the posteriori probabilities we define thresholds
by which, if under-run, classification is rejected.

Note that the combination of sliding window and re-
jection scheme imposes additional parameters. Namely,
these are the sliding window’s length w and overlap o,
and a rejection threshold for each class. In preliminary
studies we achieved promising results3.

3cf. http://www.techfak.uni-bielefeld.de/ags/ami/research/hgr/



6. Discussion

The first evaluation tested whether the classifier is
suitable and robust for this kind of problem. We found
that all four head gesture classes are easily separable
although the classification rate slightly decreases for the
four classes case.

With the second evaluation we investigated the trans-
ferability to new subjects. We observed that all four
classes are still easily separable. As a further result, we
found good transferability to new subjects for class sets
(a) and (b). For the class sets (c) and (d) we can not
conclude stable transferability. However, with more than
75% performance, these classifiers still provide good
hypotheses.

Overall, especially the look class seems to have a
negative effect on the classification rate. This finding
is further supported by the confusion matrix in Table 3.
About half of the look gestures were classified as shake
gestures. A likely reason for this might be the similarity
of both movements. We assume the classifiers to assign
look movements as fragmented shake gestures. Note that
our dataset is biased in the number of examples per class.
This is the result of our comparatively natural acquisition
scenario. Instead, we could have asked subjects to per-
form the four gestures repeatedly but we assumed such
resulting gestures much more artificial. We claim that
our data acquisition is superior since the nativeness of
the recorded gestures should be an advantage for online
recognition scenarios.

7. Conclusion & Outlook

This paper introduces and evaluates a calibration-free
OMM-based approach for head gesture recognition us-
ing 3 DoF gyroscope sensors attached to the subjects’
heads. We argued that the benefits of this sensor-based
approach compared to vision-based approaches are the
independence from lighting conditions and a great mo-
bility for the subject. Another big advantage of the
proposed method is the absence of a time-consuming
calibration. The sensor can be mounted to the head, is
instantly ready to provide data and still yields very good
results.

We conducted a comprehensive study with 10 sub-
jects and analyzed the resulting data using OMMs with
regard to separability and transferability to new subjects.
Although the classification results decrease when the
look is included in the analyzed class sets (because of
the similarity of this gesture to the shake gesture) they
still provide good hypotheses. For the sets of classes
where the look gesture is not included, we showed very

good results (>95% performance). Evaluation 2 indi-
cates good transferability to new subjects. Finally, the
system is capable to be used in online operation, thereby
giving an automatic real-time annotation tool for appli-
cation in human-computer interaction and interaction
studies. In our ongoing research we focus on the auto-
matic optimization of classification in online use and
develop a more lightweight, wireless version of the sen-
sor.
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