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Abstract—Pedestrian detection is an essential step in many
important applications of Computer Vision. Most detectors re-
quire manually annotated ground-truth to train, the collection
of which is labor intensive and time-consuming. Generally, this
training data is from representative views of pedestrians captured
from a variety of scenes. Unsurprisingly, the performance of a
detector on a new scene can be improved by tailoring the detector
to the specific viewpoint, background and imaging conditions of
the scene. Unfortunately, for many applications it is not practical
to acquire this scene-specific training data by hand. In this
paper, we propose a novel algorithm to automatically adapt and
tune a generic pedestrian detector to specific scenes which may
possess different data distributions than the original dataset from
which the detector was trained. Most state-of-the-art approaches
can be inefficient, require manually set number of iterations to
converge and some form of human intervention. Our algorithm is
a step towards overcoming these problems and although simple to
implement, our algorithm exceeds state-of-the-art performance.

I. INTRODUCTION

Pedestrian detection in monocular images is a challenging
task and a lot of progress has been made in this area (see [1],
[2] for review and comparisons). The main approach to train a
pedestrian detector is to get a generic dataset large enough to
capture as many intra-class variations of pedestrians as possi-
ble. However, no dataset can possibly capture all the possible
variations the detector is likely to face in the real world and
therefore the detector may fail to perform satisfactorily when
applied to scenes which have different data distributions than
the generic dataset [3], [4]. This can be solved by training
scene-specific pedestrian detectors which are tuned to specific
scenes but this requires collecting labelled data in every new
scene encountered and training a new detector which can be
labor intensive.

The goal of this paper is shown in Fig. 1. We have a
source dataset with supervision given in the form of pedestrian
annotations and a target video dataset where supervision
information is not available. The pedestrians in the target video
have a different data distribution than the ones in the source
dataset due to factors such as different poses, image resolution,
camera angle and illumination variations. The source dataset
is a generic (annotated) pedestrian dataset which is publicly
available. The aim is to automatically generate a scene-specific
detector which is tuned to the target video and would therefore
perform better than the generic detector. This may seem like
an infeasible task since no supervision from the target video is
available. However, this is not usually the case because there
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Fig. 1. The goal of this paper. (a) shows the high level view of this paper.
We have a generic detector trained on a generic dataset (c) available. The
proposed algorithm automatically adapts it to different target scenes given
only videos of those scenes without any label information attached with the
videos. (b) & (d) show the improvement of the automatically adapted scene-
specific detector over the generic detector for two target scenes. For (b) &
(d), the left figure shows the detection results for the generic detector and the
right for the adapted detector. For visualisation, all detection results shown
are thresholded at around 1 False Positive Per Image (FPPI).

are certain assumptions we can make about the structure of the
underlying distribution of the source data and target data [5].
This is a domain adaptation problem.

For videos, apart from the structural assumption about the
data distributions, there is knowledge that can be exploited and
is unique to videos such as the ability to model long-term scene
background information to infer about foreground objects and
the knowledge that objects in videos move in a smooth and
spatially and temporally coherent manner (which, for example,
allows object tracking). In fact, our proposed algorithm makes
effective use of this rich spatio-temporal “scene” knowledge
and we show that it can render the task of detector adaptation
for videos much easier.

The rest of the paper is organized as follows. In Section II,
we list the contributions of this paper. Section III reviews
the related literature. In Section IV, we describe the overview
and the details of the proposed algorithm. Section V discusses
the experiments and the results. Finally, Section VI gives the
conclusion.



II. CONTRIBUTION

The contribution of this paper is four-fold. Firstly, we intro-
duce the idea of bounding box proposals and initial verification
for efficient generation of a large number of scene-specific
pedestrian data with high probability of accuracy. Secondly,
we use short-term tracking for spatio-temporal verification and
data expansion (i.e. collection of hard pedestrian data). Thirdly,
we show that this combination of bounding box proposal and
initial verification, spatio-temporal verification and expansion
does not need any iterative self-training rounds, effectively
making it a non-iterative algorithm. Despite that, our algorithm
can compete or even outperform state-of-the-art self-training
algorithms. Fourthly, unlike most state-of-the-art algorithms,
our algorithm does not require the generic dataset for detector
adaptation: just the generic detector alone is sufficient. There
are many advantages to this. For instance, the generic dataset
may not be available for certain reasons (such as due to
copyright restrictions). Or it may be costly to transmit the
generic dataset to different sites for detector adaptations for
many different scenes.

III. RELATED WORK

Although a considerable amount of research has been done
in domain adaptation for audio and text [6], [5], domain adap-
tation for images and video (pedestrian detection in particular)
is a relatively new area. Domain adaptation for object detection
(as opposed to object classification) in videos brings about
new challenges (such as having to deal with large amounts
of data and class imbalance) and also opportunities that we
can exploit (e.g. from videos, we can learn a lot of things
from the scene to help with the domain adaptation). Much of
the state-of-the-art research uses iterative self-training in one
form or another [7], [8], [9], [10], [11]. In order to adapt a
generic pedestrian detector to a specific scene, a typical system
would run the generic detector on some frames in a video, then
score each detection using some heuristics and then add the
most confident positive and negative detections to the original
dataset for retraining. This is typically repeated over many
iterations. But this approach is prone to drifting since wrongly
labelled examples in one iteration could make the detector
become progressively worse in the following iterations.

Nair and Clark [11] propose an online classifier which
automatically tunes itself to a restricted area of an indoor
scene by iterative retraining using the results of background
subtraction. Grabner et al. [12] propose to train one classifier
for each image location and use a fixed rule to update the
classifiers: positive examples are assumed known and fixed at
the beginning and all incoming unlabelled data are treated as
negative examples. But this may cause drifting if an object
remains stationary for too long, causing false negative updates
to accumulate. Roth et al. [4] extended this approach by
building generative models for positive and negative classes,
which are then combined to obtain a discriminative classifier.
Stalder et al. [13] further extended this by using local pools
for positive and negative samples for each grid location instead
of a fixed positive set used in [4], [12]. But the goal of their
method and this paper is different in that our approach does
not require any manual ground-plane input or 3D context and
we are interested in adapting a detector from a generic dataset
to a target scene with the feature extraction and classification

mechanism (and hence, the number of classifiers) held fixed.
What we are looking for is the relative improvement in
performance compared to the generic detector.

Wang et al. [14] extract dense features from detections of
the generic detector to build a vocabulary tree, and examples
with high confidence are sparsely coded to build the scene-
specific detector. Their proposed approach requires manual
setting of several sensitive thresholds and also makes use of
the assumption that a detected object should be detected with
high confidence at least once among all frames considered.
However, this assumption is not practical in many situations.
For unsupervised domain adaptation in images, Gopalan et
al. [15] and Gong et al. [16] propose approaches to charac-
terize the domain shift between the source and target datasets.
There have also been approaches based on co-training [17]
and reclassifying points near the decision boundary [18] by
treating each new image as a new domain and using Gaussian
process regression.

Wang and Wang [8] iteratively improve a generic pedes-
trian detector by selecting new confident examples to add to
the original dataset for retraining at every iteration. In order to
obtain confident examples, they use a combination of vehicle
and pedestrian paths, multiple different cues such as bounding
box locations and sizes, background subtraction, thresholds,
filters and hierarchical clustering. Their approach requires
some parameter tuning such as deciding the length of a video
segment and hyper-parameters when learning the topic model,
etc. There is also a need to manually label the discovered paths
and an assumption that pedestrians and vehicle paths are not
overlapped to a certain degree. They extended their method in
[7] by incorporating techniques such as reweighting the source
data, confidence propagation and using the confidence when
retraining rather than hard thresholding.

IV. OUR APPROACH

A. Overview

The overview of our algorithm is illustrated in Fig. 2.
We describe the algorithm briefly below and the details of
the algorithm are explained in the following sections. The
inputs to the algorithm are a generic detector Cg and a target
video V = [I1, I2, . . . , IN ] of N frames to adapt Cg to.
The desired output is a scene-specific detector Cs. The first
step involves bottom-up generation of bounding box proposals
of pedestrians for V. Then these bounding box proposals
are verified using Cg (initial verification). The result is a
set of verified proposals. Each of these verified proposals is
tracked for a short period (e.g. for 3 seconds). Then each
track is verified using Cg and majority voting (spatio-temporal
verification). For each verified track, the first data in the track
and all the data which give negative labels (i.e. hard positives)
are collected. All these expanded data are pooled across all
the verified tracks to form the positive data for the scene-
specific detector. Negative data for the scene-specific detector
are sampled from the regions in V which Cg classifies as
negative and which do not overlap with any areas of the
bounding box proposals. After the scene-specific positive and
negative data have been obtained, the scene-specific detector
Cs is trained. The approach is formalized in Algorithm 1.



Algorithm 1 Non-iterative detector adaptation

Input: {Cg,V}
Output: Cs

% Generate bounding box proposals %

Bounding box proposals, B ← ∅

for Ii ∈ V do
Let Imodel be the previous estimate of scene background
Imodel ← UpdateBGModel(Ii, Imodel)
Ifgmask ← background subtraction on {Ii, Imodel}
Perform connected component analysis on Ifgmask

B ← B ∪ bounding boxes for connected blobs
end for

% Initial verification %

Verified proposals, Bv ← ∅

Let F be the function for resizing and feature extraction
for bi ∈ B do

score = Cg(F (bi))
if score > 0 then
Bv ← Bv ∪ bi

end if
end for

% Spatio-temporal verification & expansion %

Scene-specific positive data, Dp ← ∅

for vi ∈ Bv do
Set of tracked patches, P ← ShortTermTrack(vi)
Classifier scores, S ← ∅

for pi ∈ P do
S ← S ∪ Cg(F (pi))

end for
if MajorityVote(S) = positive then

for pi ∈ P do
if i = 1 or Cg(F (pi)) ≤ 0 then
Dp ← Dp ∪ F (pi)

end if
end for

end if
end for

% Collect scene-specific negative data %

Dn ← ∅

for Ii ∈ V do
Let W be the set of sliding window patches on Ii
W ←W ∪ {w ∈W : (Cg(F (w)) > 0) ∧ (w ∩ B = ∅)}
Dn ← Dn ∪ F (W )

end for

% Train scene-specific detector %

Cs ← Train classifier on {Dp,Dn}

return Cs
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Fig. 2. Overview of our proposed approach.

B. Generating bounding box proposals

The first step of the algorithm is to propose bounding
boxes of pedestrian candidates in a bottom up fashion. We
do this by performing a background subtraction algorithm
on V and connected component analysis on the resulting
foreground pixels and get tight bounding boxes around the
connected components. These bounding box proposals across
all the frames are pooled and stored in the set B.

C. Initial verification

We go through each bounding box proposal bi ∈ B, get
the image patch underlying it, resize the patch and extract the
features using the given feature extraction function F . These
features are then passed to the generic detector for scoring.
If the score is positive (i.e. the prediction is a pedestrian),
bi is considered a verified proposal and is stored in Bv . The
combination of the background proposal and initial verification
stages efficiently samples a high number of pedestrian patches
with high probability. Random samples from sets B and Bv are
shown in Fig. 3. We can observe that Bv barely contains any
mistakes. This is because the error introduced by bounding box
proposal and initial verification are uncorrelated. In addition,
Bv consists of very accurately localised pedestrians (i.e. no
patch alignment errors, etc.) which are suitable for training a
detector.

D. Spatio-temporal verification & expansion

Although the set Bv is large and contains pedestrians with
high probability, one might argue that Bv may be biased
towards pedestrians that the generic detector is already “good”
at and it might also contain some errors which both the
proposal generation and initial verification stages could not
eliminate. Therefore, we spatio-temporally verify and expand
the set Bv by short-term tracking each verified proposal
vi ∈ Bv producing a tracklet. The short-term tracking is done
independently for each vi. We do not use the generic detector
during tracking, instead we use an online learnt appearance
model. Not using the generic detector during tracking allows
us to decouple the errors made by the generic detector and
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Fig. 3. 1st and 2nd rows correspond to MIT traffic and CUHK Square datasets
respectively. 1st column shows 200 random samples from set B and 2nd column
shows 200 random samples from set Bv (see Section IV for notation).

the tracker. Spatio-temporal verification is done by applying
the generic detector on each patch in the track and taking the
majority vote of the classification scores. If the majority vote
is positive, then we consider the tracklet as verified and add the
data in the tracklet to the collection of scene-specific positive
data. In order to avoid the number of data from getting too
large, instead of adding every patch in a verified tracklet as
new positive data, we add only the hard positives, i.e. patches
in the track which have negative classification scores. Fig. 4
illustrates the idea.

E. Collecting negative examples

Scene-specific negative data are randomly sampled from
all possible multi-scale sliding window bounding box regions
that neither overlap with the bounding box proposals nor with
pedestrian detections in the frames of the video. This way,
negative data with high confidence can be obtained.

F. Training the scene-specific detector

Now that we have collected positive and negative scene-
specific data (Dp and Dn respectively), we obtain a scene-
specific detector Cs by training a classifier on Dp and Dn. It
should be noted that Dp and Dn are entirely made up of data
from the target scene only and by doing this, we are effectively
setting the weights for the source dataset to zero. We show the
effectiveness of throwing away the source dataset in Section V.

G. Extra analysis on bounding box proposal and verification

As discussed previously, the combination of bounding
box proposal generation and initial verification are the first

Verified 

proposal vi Bb  Verified 

proposal vi Bb 

tracklet A: majority voting  verified tracklet B: majority voting  discarded 

Fig. 4. Visualization of two example tracklets obtained from tracking two
verified proposals respectively. In each tracklet P , we show the patches pi
belonging to P . Since each tracklet is about 3-seconds long (76-frames), there
are 76 patches in a tracklet (with the first patch being the verified proposal).
For tracklet A, the blue rectangles indicate patches which the generic detector
Cg classifies as non-pedestrians, i.e. they are false negatives. However, spatio-
temporal verification (by majority voting in the track) successfully verifies the
track as a pedestrian track. The patches with blue rectangles are therefore
“hard” positives and are collected, along with the verified proposal, as scene-
specific positive data. The patches with the blue rectangles can be termed as
the expansion of the verified proposal. On the other hand, spatio-temporal
verification on tracklet B correctly discards the track. Even though the first
patch (the verified proposal) and other patches with the blue rectangles
are erroneously classified by Cg as pedestrians (when in fact, each has 2
pedestrians in it), majority voting successfully discards the entire track along
with the verified proposal.

and second steps of our algorithm respectively. We now
focus on this combination and compare it to state-of-the-art
research [11], [8], [7] which use background subtraction as
(one of the steps in) verification of detections of the generic
detector Cg . This is different from our approach because we
do not use background subtraction as a verifier: instead it is
the other way round in our algorithm: Cg is the verifier of
background subtraction proposals. Although this is a simple
modification, it makes a significant difference in performance
as shown in Section V. Essentially, we are not using Cg

as a sliding window “detector”, but we are making its task
easier by using it as a classifier on the verified proposals.
This minimizes possible errors introduced by a sliding window
detector (such as sliding window space discretization error
and non-maxima suppression error). Furthermore, if we use
a real-time state-of-the-art background subtraction algorithm
for bounding box proposal generation, we can very quickly
and efficiently obtain a large number of verified proposals.
It should be also noted that this is not the same as the
approach taken in hierarchical segmentation-based selective
search strategy to speed up object detection (e.g. [19]). The
difference is that their goal is improving the detector per-
se whereas our goal is domain adaptation and not to detect
every single pedestrian (i.e. high recall with high precision)
during the adaptation stage (instead, part of our goal during
the adaptation stage is just to collect a reasonable amount
of confident pedestrians). Furthermore, they are working on
static images and hierarchical segmentation based on color and
texture cues whereas in our algorithm, we are directly using
cues from the video without any hierarchical segmentation.
Lastly, we do not apply any background subtraction or any
other kinds of segmentation during the test stage after the
detector adaptation.



V. EXPERIMENTAL RESULTS

A. Classifier & features

For feature extraction and classification, we use Histogram
of Oriented Gradients (HOGs) [20] and linear SVM respec-
tively. This is done for simplicity and our algorithm can in
principal be used with other feature extraction techniques and
classifiers.

B. Datasets

We use the INRIA pedestrian dataset [20] as the generic
dataset. We use two challenging public video datasets as target
scenes: a 90-minutes long MIT Traffic dataset [8] and a 60-
minutes long CUHK Square dataset [7]. We use similar settings
and ground truth as given in those datasets for evaluation
purposes only. For each video (dataset), we divide it into two
roughly equal parts:

1) 1st half (adaptation stage): Used for (unsupervised) train-
ing. This is where all the detector adaptation takes place.
No manual annotation is used for any detector adaptation.

2) 2nd half (testing stage): After the detector adaptation is
performed in the first half, the second half is used for test-
ing. 100 frames are uniformly sampled and groundtruth
is annotated for evaluation. In this stage, no background
subtraction, ground-plane assumption or other cues are
used. Only pure (sliding window) detection performance
is evaluated. The detector is applied independently on
each frame being evaluated.

C. Descriptions of experiments

Evaluation is performed in terms of recall-FPPI (False
Positives Per Image) curves. The PASCAL 50% overlap cri-
teria [21] is used to score the detection bounding boxes. Six
different types of experiments are performed:

1) Proposed: Our proposed algorithm.
2) Baseline(Generic): The detector trained on the

generic dataset. This is the baseline for our comparison.
3) Nair (CVPR 04): This is an iterative self-training

algorithm for detector adaptation using background sub-
traction [11].

4) Wang (CVPR 11): The detector adaptation algorithm
that uses multiple cues in the video [8].

5) Wang (CVPR 12): Another state-of-the-art algorithm
presented in [7] and is an extension of [8].

6) Human supervision(X): Fully-supervised scene-
specific detector obtained by manually annotation on X
number of uniformly sampled frames in the 1st half of
video. Different values of X are experimented.

7) Proposed + source dataset (INRIA): A
modification of our proposed algorithm (Proposed).
Instead of training the scene-specific detector only on the
collected scene-specific data, we also include the generic
dataset for training.

D. Evaluation

Performance curves are shown in Fig. 5 with their plot leg-
ends referring to the types of experiments described previously.
We discuss them below.

1) Comparison with generic detector: We see that our
proposed method Proposed has a much higher perfor-
mance than the generic detector Baseline(Generic) in
all the experiments in both datasets. For CUHK Square, at 1
FPPI, the recall of Proposed is about three times that of
Baseline(Generic), which is a significant improvement.
For MIT traffic, the recall of Proposed is about 3.5 times
higher than the recall of Baseline(Generic) at 1 FPPI.
This shows that it is worthwhile to run the detector adaptation
algorithm whenever we have a new scene and we want to
automatically generate a much better detector than the generic
detector.

2) Comparison with state-of-the-art: This is shown is
Fig. 5 (a) & (d) for CUHK and MIT datasets respectively.
For CUHK, our non-iterative algorithm Proposed clearly
outperforms all the state-of-the-art self-training approaches,
Wang(CVPR12), Wang(CVPR11) and Nair(CVPR04),
which require a manually set number of iterations to reach their
peak performance given in the graphs. For MIT, Proposed
competes well with Wang(CVPR12) and is better than both
Wang(CVPR11) and Nair(CVPR04). In both datasets,
Proposed is significantly better than Nair(CVPR04)

showing that our algorithm, despite using background sub-
traction in a major way, has a much higher performance due
to it being a novel combination of bounding box proposal,
initial verification, spatio-temporal verification and expansion
by tracking.

3) Comparison with human supervision: The performance
curves for detectors trained with various amounts of hu-
man supervision is shown in Fig. 5 (b) & (e). For CUHK,
Proposed outperforms all the detectors trained with manual
human supervision including the one that was trained with
350 frames worth of manual annotation. For MIT, similar
observations can be made. However, as the number of frames
which are manually annotated increases to a sufficient number,
it is expected that Human supervision(X) may reach or
go higher than the performance of Proposed.

4) Effect of throwing away the source dataset: Our algo-
rithm does not require the source dataset when training the
scene-specific detector. The effect of including the source data
is shown in Fig. 5 (c) & (f). It is observed that for both
datasets, incorporating the source dataset slightly decreases the
performance. This observation is consistent with the intuition
that adding source dataset is akin to trying to do well on both
the generic dataset and target scene, with the net result that
the scene-specific is less well tuned to the target scene.

VI. CONCLUSION

In this paper, we propose an efficient and automatic non-
iterative algorithm that adapts a generic detector to a specific
scene given only the unlabelled video of the scene. The
algorithm outputs a scene-specific detector that performs much
better than the generic detector and performs as well as
fully supervised detectors trained on hundreds of frames of
manual annotations. Moreover, experimental results show that
the algorithm outperforms state-of-the-art approaches on two
challenging datasets. The scene-specific detector generated by
our algorithm could be used as a building block for high
level scene understanding and to improve tracking-by-detection
applications.
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Fig. 5. Detection performance curves (all on testing datasets). 1st row shows results for CUHK Square dataset. 2nd row shows results for MIT Traffic dataset.
1st column gives comparison of our proposed algorithm with state-of-the-art approaches. The 2nd column compares with manual annotation and the 3rd column
shows the effect of throwing away the source dataset.
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