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Abstract—The deformable simplicial complex method is a
generic method for tracking deformable interfaces providing
explicit interface representation, topological adaptivity, and mul-
tiphase support. As such, the deformable simplicial complex
method can readily be used for representing active contours
in image segmentation. We show the benefits of using the de-
formable simplicial complex method, by presenting an approach
for segmenting an image into a known number of segments
characterized by distinct mean pixel intensities.

I. INTRODUCTION

Segmentation is one of the basic operations in 2D as
well as 3D image processing. In some cases, segmentation
is performed by a labeling of pixels. However, often we
wish to impose some geometric knowledge about the region
being segmented, and this can be done via a deformable
model. In 2D, a deformable model is a curve that perform
the segmentation by evolving under forces derived from the
image. Such models are generally classified as either explicit
or implicit, depending on the method used for representing the
curve. Explicit methods utilize a parametric representation of
the curve in a Lagrangian formulation, while implicit methods
represent the curve as a level set of two dimensional function
which evolves according to an Eulerian formulation. Despite
this fundamental difference on how the curve is represented,
the underlying principles of both methods are the same [1].

Still, the choice of the curve representation is crucial for the
implementation of the deformable model. The explicit methods
come with a curve which is accurately represented using a
desired resolution. Furthermore, deforming forces are applied
directly to the curve. As a drawback, the explicit methods are
prone to self-intersections and do not handle topology changes.
For implicit methods the biggest benefit is a trivial support of
topology changes during evolution. As a drawback, the implicit
curve representation is bound to a regular grid. Moreover,
it might be difficult to incorporate desired forces in implicit
formulation.

If we had a method for representing a curve which is
explicit and yet has a natural support for topology changes, we
could develop an image segmenting framework, while focusing
on modeling the forces governing segmentation and without
having to consider curve representation. Deformable simplical
complex (DSC) method developed by Misztal and Bærentzen
[2] comes with those two important attributes, and even more.
Apart from allowing for explicit curve representation and

robust topological adaptivity the DSC method has a natural
multi-phase support.

DSC has been implemented in 2D or 3D and has appli-
cations in fluid simulation [3, 4], topology optimization [5]
and computing cut loci on Riemannian manifolds [6]. In this
paper we present our initial study of using 2D DSC for image
segmentation. Our aim was to investigate how DSC method
behaves when coupled with image data, with the focus on the
way DSC handles topological adaptivity and multiple phases.
Therefore we do not utilize image features and we leave a
development of such a segmentation for the future work. We
chose to consider an image which is to be segmented into
a known number of phases with a distinctive mean pixel
intensity. This choice is made because we aim at test the
performance of the DSC based image segmentation in a well
known setting.

For the same reason, we decided to seek inspiration for
the forces governing segmentation among the popular and well
tested methods, which formulate image segmentation problem
in the formalism of the deformable models, using either the
explicit or the implicit representation of the curve. We bring
an overview of such methods in the following section.

II. BACKGROUND

The basic principle of deformable models is to perform
image segmentation by evolving a curve in an image. The
curve moves under the influence of external forces, which
are computed from the image data, and internal forces which
have to do with the curve itself. The popularity of deformable
models is largely due to the well known snakes method by
Kass et al. [7]. Snakes utilize an explicit curve representation
X(s, t) = (X(s, t), Y (s, t)) where s ∈ [0, 1] is arclength and
t ∈ R+ is time, which in a discrete setting reduces to a
sequence of points. Such a curve evolves with external and
internal forces

∂X

∂t
= Fext(X) + Fint(X) . (1)

In a classical snakes formulation, the external forces are edge
based and they pull the curve towards the image locations
with a large gradient magnitude. The internal forces discourage
stretching and bending of the curve segments,
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with weights α and β controlling the elasticity and rigidity
term.

Following the success of snakes, an abundance of exter-
nal forces has been proposed (see [8] for a comprehensive
overview), most aiming at increasing the attraction range
of external forces, as in e.g. balloons [9]. For challenging
segmentation tasks, the forces allowing for user interaction
have also been suggested as e.g. volcano forces [7].

The deformable models utilizing an explicit curve represen-
tation have difficulties dealing with topology changes, such as
merging or splitting. Whenever such a change occurs a costly
reparametrization scheme is needed [10].

As the solution to the problem of topological adaptivity,
the approaches utilizing implicit curve representation quickly
followed [11, 12]. The curve is here represented as a zero level
set of a 2D scalar function φ(x, y, t) defined on the image. The
curve is evolved in accordance with a level set [13] equation

∂φ

∂t
= v(κ)∇φ , (3)

where ∇φ denotes the gradient of φ (normal direction of the
curve), κ is the curvature at the zero level set and v(κ) is a
given speed function coupled with the image data. In original
formulations [11, 12] a speed function is constructed such that
it vanishes in image locations of the large gradient magnitude.
The evolution with therefore stop when the curve it meets an
edges of the segmentation object. To ensure that the curve does
not leak through, additional stopping terms to a speed function
have been proposed e.g. in [14].

A common drawback of the methods described so far is
that they are edge based, which provides only a local support
and is unsuitable for noisy images or for segmenting objects
with weak edges. Region based methods [15, 16] combine
the information obtained from the image segmentation to
improve the robustness of the model. Those methods use level
set formulation of Mumford-Shah [17] minimization problem
seeking a piecewise smooth (or, as a reduced case, a piecewise
constant) approximation of an image. The term stopping the
evolution of the curve depends on the obtained segmentation
of the image. The level set equation for two-phase case (an
object and a background) and without the term regularizing
the length of the curve is

∂φ

∂t
=

[
(I −min)

2 − (I −mout)
2
]
∇φ

= (mout −min)(I −mout + I −min)∇φ . (4)

Here min and mout are current means of the area inside
the curve and outside the curve and I is used to denote the
image intensity. This speed function can be viewed as a signed
pressure force, such that the curve shrinks where it is outside
the object and expands where it is inside the object, yielding
a flow that pulling two mean estimates apart.

A general idea of representing more than two phases is
to use more than one level set function. The straightforward
solution is to represent each phase with one level set as in [18]
where a additional energy is introduced to minimize (but not
eliminate) overlap and vacuum. The regional based multiphase
framework proposed in [19] uses a hierarchial approach where

they subsequently segment previously obtained segments, al-
lowing for a segmentation of an unknown number of phases,
but having the limitation of segmenting all triple points as
T-junctions. In [20] 2n phases can be represented using n
level sets by assigning an unique combination of n positive or
negative signs to each phase, with the drawback of a possible
bias where more than one phases meet.

Segmentation images using DSC method complies fully
with the formal framework of the deformable models. All
forces previously suggested in either explicit or implicit for-
mulation can be applied on the curves represented with DSC.
Furthermore, DSC comes with a natural multiphase support,
allowing us to define multiphase segmentation without the te-
dious level set coupling due to the nature of the representation
of the curve.

III. METHOD

The DSC method is a key ingredient of our approach.
We therefore include a description of the principles and the
features of the DSC method with a focus on the 2D variant.
The readers interested in implementational details or the 3D
version are referred to work by Misztal and Bærentzen [2].
Even though DSC has a natural multiphase support, we start
by considering a two-phase case, which is later generalized to
a multiphase case.

A. The Deformable Simplicial Complex Method

Like the level set method, the DSC method is a method
for dealing with deformable interfaces. While level sets are
defined on a regular grid in either 2D or 3D, the DSC is
defined on a simplicial 2-complex or 3-complex, corresponding
to the triangularization in 2D or tetrahedralization in 3D. Just
as the sign of the level set function determines whether a grid
point is inside or outside the curve, the simplices of the largest
dimension in DSC (triangles in 2D and tetrahedra in 3D) are
labeled either inside or outside. As a result, a DSC interface
(curve in 2D and surface in 3D) is represented as a set of lower
dimension simplices (line segments in 2D and triangles in 3D)
dividing interior from exterior.

The deformation of the interface is performed by moving
the interface points. This means that the DSC method is
explicit in nature and it preserves the advantages of Lagrangian
methods, despite the described analogy with level sets. Still,
the approach shares one of the biggest advantage of the
Eulerian methods – topological adaptivity. Whenever the in-
terface moves, the triangulation (tetrahedralization) is updated
accordingly to accommodate the change. If, for example, the
two interfaces components collide this change will cause them
to merge.

The key to this topological adaptivity lies in a series
of mesh operations performed with each deformation of the
interface. Loosely described, the procedure in the 2D case
is as follows. The interface points are not moved to their
destination in a single step. Instead, each points is moved in the
direction of the destination as far as possible without inverting
triangles. When all points have moved, a mesh improvement
routine is applied. This includes removing degenerate triangles,
improving the mesh quality (via Laplacian smoothing and
edge flips) and inserting points. The interface points are now



moved further towards their destination. This is repeated until
all points have reached their destination. Mesh improvement
routine relies on some chosen threshold values, defining e.g.
when a triangle is degenerate. Those thresholds are a part
of DSC and a single parameter required from a user is an
average edge length of the triangles. It should be noted that
DSC is customizable. For example, topology changes may be
prohibited and the resolution or the required mesh quality may
be changed or adaptive.

To summarize, the DSC method represents interface ex-
plicitly and yet it handles topology changes. Change of the
interface are obtained by defining a displacement of vertices,
possibly supplemented by actively changing labels of some
triangles. Another advantage of the DSC method is that the
discretization of the space may be exploited. For example, the
area or perimeter of the inside region can easily be calculated.
And lastly, DSC comes with a natural multiphase support. One
can use an arbitrary number of triangle labels rather than just
inside and outside.

B. Two-Phase Segmentation

Our two-phase segmentation approach evolves a curve with
external and internal forces. External forces are region based
and are directly adopted from (4), but this time explicitly
formulated as forces acting on the curve points X as

Fext(X) = (mout −min)(I −mout + I −min)N , (5)

where N is an outwards pointing normal.

Since we have an explicit curve representation, we use
internal forces as defined in (2). It should be noted however
that those regulatory terms have a different role here than in
classical snakes, where elasticity is used to hold the curve
points together at the expense of shrinking the curve. Our DSC
curve representation automatically handles reparametrization
and maintains a stable length of line segments. This fully
removes the need for the first regulator term, and fairing of
the curve can be performed using rigidity alone.

These forces will suffice if we e.g. want to segment an
contiguous region from an initial seed point. If we want to
segment a phase containing discontiguous regions or we want
to introduce holes, we need to supplement curve evolution with
the possibility of a triangle changing a label. We refer to this
as label flip. In our initial two-phase model this happens when
a triangle labeled as inside has a mean pixel intensity mt such
that |mt −mout| < |mt −min|, or vice versa.

When label flips are allowed we initialize by bisecting
the dynamic range of the image and labeling the triangles
according to their mean intensity. When testing the curve
evolution without the label flips we initialize with a spherical
region marked inside.

Note that the singular crossing points might occur even
when using only two phases, consider fx. checkerboard pattern.
In our present two-phase implementation we do not apply any
forces to crossing points, and those are resolved automatically
trough displacement of the neighbouring points on the inter-
face.

C. Multiphase Segmentation

In multiphase segmentation, triangles are labeled as be-
longing to a phase i ∈ {1, 2, . . . N}. Interfaces are now
line segments dividing two phases and triple junction points
generally occur. We still need to define only two actions in
order to perform segmentation: the forces on the interface
points and the label flip procedure.

Let us first consider interface points Xij shared by just two
phases i and j. Region forces (5) are generalized by using mi

and mj , which are current mean intensities of the phases i and
j. When considering interface points between any two phases
(any combination of i and j), the external forces will be weaker
between phases with mean intensities closer to each other than
for two phases with intensity means closer together. As an
example, consider the case illustrated in Fig. 1 left where the
pixel intensities range from 0 to 255. Expanding region forces
applied to the curve in order to include pixels with the intensity
m3 into a phase 3 have a magnitude which is a few times larger
between phases 1 and 3 (denoted f13 in the illustration) than
between phases 2 and 3 (denoted f23). The fact that the force
magnitudes differ substantially depending on the interface may
cause convergence problems, and to avoid these we normalize
the region forces. We require the resulting force to take a value
of 1 or -1 when the image intensity I exactly equals one of
the two means in the expression for the force. A normalized
formulation of the region forces is

Fext(Xij) =
I −mi + I −mj

mi −mj
Nij . (6)

Here Nij is a curve normal pointing from the phase i towards
the phase j, and with Xij we indicate that the force is applied
only to interface points shared by phases i and j. See on Fig. 1
middle how this affects forces in our example, and note that
both a force magnitude f13 and f23 take a value 1 in m3.

In our current implementation we apply the external forces
only to some crossing points, namely those crossing points
which are shared by an set of regions which all belong to an
unique phase. In particular, we apply a force for triple junctions
and do not apply a force to crossings which occur in two-phase
case. The reasoning behind this is as follows. If only distinct
phases meets at crossing point, the resulting force on the point
is resolved by considering pixel intensity I . It should be a
phase with a mean closest to I that expands most. This can be
formulated as a weighed combination the normal contributions
of each phase. On the other hand, if there is phase represented
twice around a crossing point the normals of those two regions
will conflict most probably point in opposite direction. Normal
movement in this case should not only only a position of the
crossing point but should result in a phase merge in case of
expansion, and a split when shrinking the phase. For now we
refrained from include those active topology changes in our
model.

As described above, for the first type of crossings which
include triple junctions, the force on a point is defined as a
combination of the contributions from each phase. We decided
to retain only the contributions of the two phases which have
the mean intensity directly below and directly above the image
intensity I and to weight the two contributions using a linear
function of I . To exemplify the approach let us consider a



Fig. 1. An illustration showing magnitudes of forces used in three-phase segmentation, Fext(Xij) = fijNij . On the left the magnitudes obtained by directly
generalizing (5) to three labels, in middle the magnitudes after applying our proposed normalization. On the right a force applied to a triple junction expanded
to contributions of each phase Fext(X123) = f1N1 + f2N2 + f3N3.

triple junction point between regions 1, 2 and 3, and the pixel
intensity which falls I between m1 and m2. The resulting force
would be

Fext(X123) =
m2 − I
m2 −m1

N1 +
I −m1

m2 −m1
N2 , (7)

where Ni is a curve normal pointing away from the region
i. On Fig. 1 right you can see the weights of the three
contributions for any pixel intensity I . Note that in case of
I = mi the triple junction point moves merely due to the
expansion of the region i.

The internal need also be generalized to include crossings.
This has been done by tracing the boundaries of each phase
and, in case of the crossing point, averaging the phase con-
tributions. As a result, the rigidity term will try to move the
crossing point towards the configuration where the angles of
all the regions around the point are equal.

Finaly, we also need to consider a label flip. In a multiphase
case we need a more robust similarity measure than mean
triangle intensity which might place a triangle containing
e.g. half of pixels with intensity m1 and half of pixels of
intensity m3 into a phase 2 provided that means are sorted and
somewhat equidistant. Instead, a following scheme has been
implemented. Each pixel of a triangle is assigned to a phase
based on the distances |I − mi|. The label of the dominant
phase is than assigned to a whole triangle.

IV. RESULTS

Fig. 2 shows an outcome of our two-phase segmentation
which matches the results obtained by other implementations
of region based forces. Arguably, the initialization places a
curve close to the final solution, but notice automatic topology
changes underway and the correctly resolved crossing points.
To demonstrate the robustness to initialization and to illustrate
how the curve evolves subject to region forces we show in
Fig. 3 a segmentation without label flips. Notice the fully
automatic change in topology where the two branches merge.

An example of four-phase segmentation is shown in Fig. 4.
Topology changes and triple junctions are handled fully auto-
matically. In Fig. 5 we show the effect of changing the average
triangle edge length, which is the only parameter relating to
DSC in our current implementation. We can see that the detail

on a differen scale has been extracted from the image. A thin
gray band appears where the dark and the light intensities
bland. Notice also a small boundary artifact present in our
current implementation – a triangle edge may not be shorter
than a given threshold value, so an object may not come
arbitrarily close to the boundary of the image. Finally, in Fig. 6
we show a three-phase segmentation without label flips. Note
again how topology automatically changes when two regions
meet.

V. CONCLUSION

Our results confirm that the DSC method can be an interest-
ing addition to an existing toolbox of deformable models used
for image processing. We demonstrate how the two important
qualities of the DSC method, adaptive topology and multiphase
support, can be exploited in an image segmentation applica-
tion. We believe that the results of our initial investigation are
promising, and we are determined to use the DSC method in
other segmentation applications.

Firstly, we plan to formulate our current approach as a
Mumfor Shah [17] model for piecewise constant and piecewise
smooth approximation. We also plan segmenting images into
an unknown number of phases, given some quality threshold
for the resulting segmentation/approximation.

We are already working on a texture based image seg-
mentation framework which will utilize the DSC method for
the curve representation. And finally, we wish to develop a
volumetric segmentation based on the DSC method. In that
regard the results shown here are important, since all region
based forces easily generalize to 3D.
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