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Abstract—We describe a novel framework for segmenting a
time- and view-coherent foreground matte sequence from syn-
chronised multiple view video. We construct a Markov Random
Field (MRF) comprising links between superpixels corresponded
across views, and links between superpixels and their constituent
pixels. Texture, colour and disparity cues are incorporated to
model foreground appearance. We solve using a multi-resolution
iterative approach enabling an eight view high definition (HD)
frame to be processed in less than a minute. Furthermore we
incorporate a temporal diffusion process introducing a prior on
the MRF using information propagated from previous frames,
and a facility for optional user correction. The result is a set
of temporally coherent mattes solved for simultaneously across
views for each frame, exploiting similarities across views and
time.

I. INTRODUCTION

The creative industries are turning to multi-camera systems
for the acquisition of 3D assets in movie and game production.
In particular, 4D performance capture (4DPC) [1] is maturing
as a technology for reconstruction of moving 3D models from
synchronised multiple view video. 4DPC is underpinned by
the extraction of polyhedral [2] or voxel [3] visual hulls, which
require segmentation of the actor’s silhouette from background
within each captured view — the process of matting. Unfor-
tunately multi-view matting has received little attention and
remains unsolved in the general case. This often necessitates
use of distinctively coloured (chroma-key) backgrounds [2],
[3], [4] so limiting practical scenarios for 4DPC.

This paper contributes a novel framework for multiple
view video matting, encouraging both temporal coherence
and spatial coherence between views. We define a Markov
Random Field (MRF) across pixels in all views and super-
pixel correspondences identified between pairs of views. The
MREF is solved once per frame to extract the binary mat-
tes for all views simultaneously. Our solution of all views
in a single step contrasts with existing methods that either
propagate labels between pairs of independently solved views
[5], or build foreground appearance models across all views
but then independently solve the segmentation for each view
[6]. Additionally, we contribute a propagation strategy in
which soft labelling constraints are carried forward in time
to influence the MRFs defined over subsequent frames, so
enhancing the coherence of the resulting matte sequence. Our
experimental setup, typical of a 4DPC scenario, comprises 8§
cameras surrounding the actor resulting in views spaced at 45
degree intervals. We instantiate our framework using colour,
texture and disparity cues, and calibrated cameras to determine
super-pixel correspondences between views under the epipo-
lar constraint. However alternative cues and correspondence

strategies might be incorporated and our method does not in
principle require calibrated cameras.

A. Related Work

Video segmentation is a fundamental problem that has
attracted considerable research effort, the majority focusing on
monocular sequences. Monocular approaches perform either
spatio-temporal (3D) analysis, or frame-by-frame processing
with temporal information passing (2D+t). Methods in the for-
mer category either perform unsupervised clustering on pixels
of a space-time video stack [7], [8], or develop hierarchical
graph [9], [10] or surface [11] representations over space-time.
However such approaches often under-segment fast moving
objects and become computationally infeasible for videos of
even moderate size, suggesting extensions to multi-view video
to be intractable. The 2D+t category segments 2D frames
independently and then associates [12] or tracks [13] labels
over time to identify and prune sporadic regions. Minimal
user-interaction is often used to correct for tracker drift [13],
[14]. Our multi-view work adapts the probabilistic strategy of
Wang et al [15] who perform graph-cut optimization on a per-
frame basis, using label priors propagated forward over time on
monocular video. Both our problem domain and the structure
of our MRF differ significantly however due to the incorpora-
tion of multiple views and super-pixel correspondences.

Prior multi-view segmentation algorithms typically draw
upon geometric constraints implicit within 4DPC, simultane-
ously deriving mattes whilst performing visual hull estimation.
Zeng et al [16] iteratively carve an over-estimate of the hull to
obtain a consistent set of mattes. Graph-cut [17] and convex
optimization [18] have also been explored for simultaneous
estimation. Weaker geometric information is incorporated by
Sarim et al who propagate trimaps between views by match-
ing along the epipolar line [5]. Recently Djelouah et al [6]
proposed a geometry-free approach, building foreground and
background appearance models simultaneously across views
using expectation maximisation. However to perform the seg-
mentation itself a set of independent graph-cuts (via GrabCut
[19]) are used to extract a matte from each view in isolation
using those models. We adopt a complementary approach,
extracting mattes using a single novel graph-cut over an MRF
spanning all views, using models built independently per view
and propagated over time.

II. MULTI-VIEW SEGMENTATION FRAMEWORK

A 4DPC wide-baseline camera configuration typically
comprises 8 calibrated high definition (HD) cameras in a
circular formation about the subject. Consequently large vari-
ations in view angle occur and subject resolution is often



limited by the desire to maximise capture volume. Pixel-
level stereo correspondence is unreliable on such wide-baseline
footage. However larger-scale similarities can be exploited
by using superpixel matching to acquire the correspondence
across views. Furthermore each superpixel provides a texture
or colour homogeneous domain within which richer visual
features can be exploited without being affected by clutter
from the neighbouring superpixels. In our MRF representation,
nodes are formed by both pixels and superpixels from multiple
view images, and edges are the inter-view correspondences
among superpixels, intra-view links among superpixels and
underlying pixels, and intra-view links among each pixel
lattice. This hybrid representation enables a robust multiple
view segmentation which incorporates both the intra- and inter-
view appearance and geometry consistency.

We propose a multiple-layer MRF G = (V, £) composed
of pixels and superpixels. We formulate multiple view video
segmentation as a labelling problem of assigning each node
i€V (V={V,UV,}) in frame I, a value x from the binary
label set £ = {0,1}, where V, and V; represent pixel and
superpixel nodes respectively. We seek to infer a consistent
labelling x = (z;)iev, U (75);jev, of these nodes that better
separates the foreground (I = 1) and background (I = 0) area,
driven by both the appearance model and camera geometry
properties on the current frame and labelling priors propagated
forwarded from past frames. We formulate the problem as the
minimization of:
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where A, and N denote the set of neighbours {u €
V|(u,v) € £} of pixel or superpixel v respectively, and 6, is a
parameter. The first two terms ¢! and ) are unary potentials
encoding the likelihood of pixels and superpixels given the
appearance models or labelling priors. The following two terms
wfj and 17 represent pairwise terms of pixels and superpixels
respectively which encourage coherent inter- and intra-view
labelling.

A. Graph Construction

We first describe how the hybrid graph is constructed.
Our algorithm starts by segmenting all views of the current
frame to produce a set of superpixel maps (~2500 per im-
age) using SLIC [20]. SLIC clusters pixels in a combined
five-dimensional RGB colour and image coordinate space to
efficiently generate compact, near uniform superpixels. Pixels
and all the generated superpixels form the nodes in the graph
as shown in Fig. 1. Four types of edges exist:

1)  pixel-to-pixel edges in the 4-connected neighbour-
hood within each image,

2) edges between the superpixels and their composit
pixels within each image,

3)  superpixel-to-superpixel edges, with adjacency de-
fined on 4-connected basis, within each image’s su-
perpixel map,

4)  superpixel-to-superpixel edges between neighbouring
views.

The first three types of edge are defined using connectivity
within each image independently, whilst the fourth type is
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Fig. 1. TIllustrating MRF connectivity between pixels and super-pixels.

defined by the superpixel matching between adjacent views,
as detailed later in Sec. II-C. Our hybrid graph exploits
both the pixel/superpixel level observations and the inter-view
information using sparse superpixel matching across the multi-
view video frame.

B. Definition of Energy Potentials

We now describe how the the energy potentials are defined
respectively in eq. 2 which consists of both unary and pairwise
potentials of pixels and superpixels.

1) Pixel Unary Potentials: The pixel unary term ! ex-
ploits the fact that different appearance homogeneous regions
tend to follow different appearance models. This encourages
assignment of pixels to the label following the most similar
appearance model (we write the parameters of such models
©). The unary term is defined as the negative log-likelihood
of a label being assigned to pixel ¢. It can be computed
from the appearance model for each label. To provide more
discriminative power for accurate segmentation, the unary
term incorporates colour and texture features as well as prior
labelling probabilities. The pixel unary term is defined:

V(1) = 00 Vo (i) + ObeyVteg (i) + 0000 (2). (2)
where 6, 07, and 6], are weights of colour potential
YP (x;), texture potential ¢}, (x;) and prior labelling poten-
tial ¢}, (;) respectively. We define colour potential:

1
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where the colour models (©.,;) are represented by a mixture
of Gaussians (GMM) in RGB colour space, W; is a squared
window (15x 15 in the implementation) centred at pixel ¢, ||
is the cardinality of W;, and w(-,-) assigns a support weight
to each pixel within a support window which is defined as
w(i, j) = exp(fw). o represents a parameter (30 in
’ o

the implementation), and ||I; — I,|| denotes the L; distance
between I; and I; in RGB colour space. The unary potentials
are averaged over a small local window which acts as a local
edge-preserving smoothness constraint.
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Colour potential alone is not very discriminative and we
incorporate texture potential to achieve more accurate segmen-
tation. To this end, we adopt textons [21] which have been
proven effective in categorizing general objects.

For extracting texton histograms, we use a filter bank
comprising 36 bar and edge filters, 1 Laplacian of Gaussian
(LoG) and 1 Gaussian filter. The 36 bar and edge filters (6
orientations and 3 scales for each) are applied to the luminance
channel only, producing 36 filter responses. The Gaussian filter
is applied to each CIELab channel, thus producing 3 filter
responses. The LoG is also applied to the L channel only, thus
producing 1 filter response. We quantize filter responses to 400
textons by running K-means clustering and each pixel in I is
assigned to the nearest cluster centre to generate the texton
map 7. We define the texture potential as:

1
Vpew (T) = A > w(iyg) - —logPy(Ty(j)|zi: Orea).
tjew;
Pg(Tt(zﬂxl = ln; @ter) = Hn(Tt(l)) (4)

The texture model ©;., of the nt" label I, is represented
by a discrete probability model given the normalized texton
histogram H" learned from the texton map in the first frame.
Similar to the Gaussian weighting in the colour potential, we
aggregate texture potentials over a small window centred at 7.

The labelling prior potential exploits the fact that pixels
with a higher probability propagated from particular labelled
region tend to have consistent label assignment. Unlike other
interactive or automatic segmentation algorithms which use the
labelling prior as a hard constraint, we incorporate labelling
prior as a soft constraint which is inferred from a probabilistic
motion estimation framework which inherently takes into ac-
count the motion estimation errors. Details of the process by
which labels are propagated over time in our framework are
given in Sec. II-D.

2) Superpixel Unary Potentials: Superpixel unary poten-
tials exploit a higher-level tendency that a group of pixels
follow different appearance models. Superpixels provide an
unique domain where rich visual features and machine learn-
ing techniques can be utilised. Superpixel segmentation also
imposes a soft constraint to guide the label boundaries towards
high contrast image edges. We extract three features from each
superpixel: a histogram of Textons; a histogram of SIFT visual
words; and a histogram of CIELab colours.

We extract Texton histogram H/ from each superpixel i in
a similar manner as in Sec. II-B1. We quantise SIFT features
into a codebook Containin% 200 visual words using k-means,
and extract a histogram H; from each superpixel. We convert
the pixel colours into the perceptually uniform CIE Lab colour
space, where we extract a 23 x 3 bin histogram H from each
superpixel. We concatenate the histograms from three features
to form a histogram H; of 669 bins from superpixel 7. In
this case, learning GMMs with such a high dimensionality is
infeasible. Rather, we train a linear SVM classifier over the
extracted feature.

The pixel unary term is defined as

where P(H;|x;) is obtained from the trained SVM classifier.

3) Pixel Pairwise Potentials: The pixel pairwise terms
encourage coherence in region labelling and discontinuities to
occur at high contrast locations, which is computed using RGB
colour distance, disparity map between adjacent views using a-
expansion stereo matching algorithm [22], and the appearance
disparity between pixel and superpixel:

Vpi(i,xg) = Vo (zi,25) + 05,0, (T, 25)  (6)
+05, 0%, (i, 5).

where 67, and 07, are weights of the disparity map
compatibility wsisp(xi,xj) and pixel-to-superpixel pairwise
YL, (x4, ;) respectively.

We define the pixel colour pairwise term as

0 if z;, =x;
N i Ve
wcol(m“m.?) - { e—,BleIt(i)—It(j)HQ if x; 7& 90;‘7 (7)
where (., is chosen to be contrast adaptive [19]:
1 . A2y
6001 = §<||It(z) _It(J)H2> 1' (8)
where (-) denotes expectation over an image sample.
Similarly the pixel disparity map compatibility as
0 if T; = .’Ej,
Visp (T 5) = { e~ Paisn 1D =D if g of . ©))

where (4;5p is a parameter (10 in the implementation).

The introduction of the appearance disparity between pixel
and superpixel is based on the premise that pixel labelling
helps to overcome errors propagated from the superpixel, the
superpixel level enforces spatial grouping, which is defined as

0 if T, = Ty,

P . ) —
Vep (@i 2j) = { e~ Pron if @, # 1. (10)

where ’H; and H; denote the histograms of Textons and Lab
colours of superpixel j respectively, T;(i) and Cy(i) are the
Texton label and Lab colour value at pixel ¢, and 3,y is a
contrast adaptive parameter:

B = (1 S HUT) + H@O)) . aD

4) Superpixel Pairwise Potentials: The superpixel pair-
wise explores both the cross-view consistency and intra-view
smoothness of superpixel labelling, defined as

0 if XTi = Tj,

¢S(I’i>xj) = { e Bsp if X 7’5 Z;j. (12)

where Dy r,(H;||H;) denotes the KL-divergence between full
feature histogram H; of superpixel ¢ and H; of superpixel j,
and [, is a contrast adaptive parameter:

1
Bsp = §<min(DKL(Hi||Hj)aDKL(HJ|\H¢))>_1~ (13)



C. Superpixel Matching

With wide-baseline camera set-ups and natural back-
grounds, stereo matching is no longer reliable to find dense
pixel-level correspondence. We overcome this problem by
exploiting both the superpixel-level appearance measure and
camera geometry to identify potential correspondence of re-
gions between each pair of adjacent views.

For each superpixel Sf ~1in view Vi_;, we compute the
distance between S¥~! and a set of relevant superpixels S¥ in
view V.. This relevance is determined by the camera geometry.
Specifically, SF consists of all the superpixels on the epipolar
line in view Vj, corresponding to the centroid of superpixel
Sffl in view Vj_q1. The distance between superpixels is
defined as

argmax %0 (Pra =Pl min(Dyep (HG|[H;),  (14)
jeSk
D1 (Hj|H;)).

where [,y is a parameter (2 in the implementation) and Py,
denotes the foreground probability of superpixel which are
defined as

P(Hi|z; = 1)

Py, = . 1
59 P(Hi[r = 1) + P(Hi]r; = 0) (4

D. Bootstrapping and Motion Propagation

We bootstrap the first frame of segmentation by manually
supplying a relatively accurate mask for the desired object
using image-based object selection tools, such as GrabCut [19]
for all views at t = 0. To encourage spatio-temporal coherence
between consecutive frames, we adopt a probabilistic motion
diffusion strategy similar to Wang et al. [15]. The purpose
of the motion diffusion model is to propagate forward the
labels of past frames — forming a distribution of labelling
priors for segmentation of the current frame. In contrast to the
motion diffusion model proposed in [15], which diffuses the
propagated subset of pixels to close vicinity and assumes the
predicted position as the centre of an isotropic Gaussian distri-
bution, we adopt an oriented anisotropic Gaussian distribution
to better capture the inherent errors in motion estimation along
the motion vector.

Specifically, let 2, (n € {0,1}) be a region of interest in
frame I;_, labelled as z,, (x,, € {0,1}). We form a subset of
pixels O,, C ), by sampling from a morphologically dilated
skeleton of region (2, for propagation, to account for the
impact from imprecise motion estimation close to boundary.
Let Ji' (k= 1,2,3,-,]0,|) be pixels in O,, with position
2, ! For each pixel J; ' € Oy, its position 11}, = (, f1)) in
frame I; is computed based on the motion vector from optical
flow. We treat the predicted position as the centre of a oriented
anisotropic Gaussian distribution,

p(=' |27 bl 0wy 00, 0) =

(2L = pa)cost + (2}, — pu,)sind)? N

exp

2mo,0y 202
(~(aL — pua)sind + (2 — 1y Jcost)?
3 (16)
202
where 2! = (zi,zfj) is a position in frame I;. o, and o,

are the variances in the direction of motion vector (axis u,
with orientation #) and the axis v which is orthogonal to u

respectively. We use the local motion coherence to encode
the motion estimation error. This accommodates the per-pixel
local motion estimation errors o,, along the direction of motion
vectors as in [15]. o, is set to be o,,/3. Based on this novel
definition of oriented anisotropic per-pixel motion distribution,
the likelihood p(z*|l;) of the pixel at 2 being assigned with
label x; propagated from previous frame in the sequence,
following [15]. We define the prior labelling potential as

Uhy(ei) = —logp(zila;). (17)

which is encoded directly in the unary term of our energy
function (eq. 2), which comprises a sum of appearance and
labelling potentials (described in Sec. II-B1, eq. 2).

E. Multi-resolution Solution of MRF

To substantially reduce the computational cost of segmen-
tation across all views, we adopt the multilevel banded graph
cut [23] for iteratively segmenting each frame into foreground
and background regions. In practice, we adopted a three-level
banded graph cut with a downscaling factor of 2, to achieve
a trade-off between accuracy and complexity, which is ~ 8
times as fast as the original graph cut algorithm and consumes
~ 4 times less memory.

III. RESULTS AND DISCUSSION

We evaluate our algorithm using two publicly available
indoor multi-view video sequences; KARATE and SALSA
shot using 8 synchronised HD Canon cameras spaced at ~ 45
degree intervals in a circular arrangement on 1.5 metre tripods
surrounding the performance [24]. Sequences are shot against
general clutter in the studio, causing background appearance
to vary across views. Both sequences contain a variety of
complex and fast moving actions by one (KARATE) or two
(SALSA) people. In both cases 60 frames of the sequence were
processed, then compared with a ground truth mask defined
manually at 5 frame intervals across all of the 8 camera views.
The ground truth data was not made available to any of the
algorithms.

We qualitatively (Fig. 2) and quantitatively (Figs. 3-4)
compare the performance of our proposed approach with seven
alternative approaches commonly used for matte generation:
two forms of RGB chroma-keying, motion-differencing, and
the algorithms GrabCut [19], Geodesic segmentation [25], and
Geodesic Graph-cut [26]. Additionally we compare against
Sarim et al’s multi-view segmentation method that propa-
gates tri-maps between views using patch matching along the
epipolar constraint, but independently solves views following
propagation. Our method not only propagates information
between views but solves all views simultaneously using our
novel inter-view MRF approach.

Fig. 2 provides representative samples of multi-view frames
and their output. To generate the mattes using our multi-view
method, user segmentation is performed in the first frame
and very minor corrections e.g. a small scribble in a view is
required approximately every 5-10 frames due to information
propagation between views and over time.

The first RGB chroma-keying method we compare to (RGB
ratio) uses a thresholded ratio of blue (b) to red (r) and green
(g) ie. ﬁ > TrGBratio to produce the matte on a per-
pixel basis. This is commonly used in 4DPC matting [4]. The
second chroma-keying method (RGB eigen) computes a per-
pixel background likelihood via Mahalanobis distance from



Fig. 2.

an Eigenmodel built from the mean (x) and covariance (C)
of RGB colour samples of the background (obtained manually
in the first frame). Each pixel’s colour ¢ is thresholded via
(c—p)C e—p)T < TRGBeigen- Inter-frame motion subtrac-
tion (Motion Differencing) is commonly used to create mattes
by differencing adjacent frames and thresholding (Tnod:ff)-
This is performed independently for each camera view in our
comparison. To ensure fair comparison we exhaustively search
the range of the thresholds (TrgBratios TRGBeigens Tmodiff)
for each of these methods to find the optimum level with
respect to our objective evaluation measure (eq.18).

Methods GrabCut [19], Geodesic segmentation [25] and
Geodesic Graph-cut [26] are commonly used in image pro-
cessing to interactively obtain object mattes from a set of
scribbles generated manually over the image. We apply these
independently to each view and frame, generating scribbles for
each ground truthed frame. The tri-map propagation (TriProp)
approach of Sarim ef al. was also compared against, and was
initialised manually at ¢ = 0 as per [5] using only a single
tri-map key as input.

In all cases we obtain a score E(M,G) € [0, 1] represent-
ing the accuracy of the mask generated by an algorithm M
with respect to the manually defined ground truth mask G:

MNnG

E(M.G) =356 (18)

On SALSA, the accuracy of the proposed algorithm was
87.9%, versus 8.5% for RGB difference, 37.4% for Eigen-
model RGB, 36.3% for motion difference, 59.5% for GrabCut,
40.6% for geodesic segmentation, 57.6% for geodesic graph-
cut, and 86.1% for tri-map propagation. The error-bars within

Multi-view segmentation results for SALSA (upper) and KARATE (lower). Red: under-detected vs. groundtruth. Blue: over-detected vs. groundtruth.

Fig. 3 illustrate greater robustness of our approach across views
with respect to interactive methods [19], [25], [26] which
despite frame- and view-specific guidance fail to produce
consistent results in all views. The inter-view matching and
temporal propagation of information regularise the mattes
under our proposed approach. The presence of two differently
dressed actors in this sequence does not reduce robustness
versus KARATE, where with tri-map propagation the region
between performers is frequently classified false-positive.

Accuracy on KARATE was 88.1% for the proposed algo-
rithm, versus 39.2% for RGB difference, 62.8% for Eigen-
model RGB, 48.1% for motion difference, 60.2% for Grab-
Cut, 63.4% for geodesic segmentation, 77.3% for geodesic
graph-cut and 83.5% for tri-map propagation. Although the
methods compared against perform significantly better on
this footage, our approach exhibits significantly greater inter-
view robustness (error-bars of Fig. 4) and overall performance
improvement. Note that the closest rival interactive method
(geodesic graph-cut) requires ab initio per-view and per-frame
user interaction whereas our approach requires partial and
minor correction (only a few strokes) every 5-10 frames.
In this sequence tri-map propagation is out-performed by
our proposed approach by ~ 4.6% per frame yet exibits
comparable robustness across views (c.f. error-bars).

A limitation of our approach is the relatively high compu-
tational complexity. The basic chroma and difference keying
approaches compared against are near-instantaneous, and the
optimized implementations of the interactive approaches [19],
[25], [26] take 8-10s per HD (1920 x 1080) frame to compute
(i.e. over 8 views). Our approach takes approximately 40-60s
per multi-view frame to solve the MRF. Nevertheless this is
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practical for processing 4DPC as an offline process.

IV. CONCLUSION

We have demonstrated a novel multi-view video matting
method suitable for incorporation into a 4DPC pipeline. The
key contributions of this method are 1) the propagation of
appearance and spatial information across views using super-
pixel matching and a novel MRF that solves the mattes
simultaneously across all views, 2) the temporal propagation
of appearance and spatial information forward in time. Both
contributions enhance inter-view and temporal coherence, and
so improve accuracy of the matte. Although the second con-
tribution broadly follows the pipeline of Wang et al. [15]
for matte propagation in monocular video, such an approach
has not previously been applied to multi-view video — a
domain in which removing the requirement for per-frame
manual initialisation of matting is particularly attractive due
to the overhead of marking up multiple views. In addition,
stable application of [15] required extension of that method
to use anisotropic rather than isotropic motion diffusion. We
have quantitatively and qualitatively compared against seven
alternative approaches commonly used in video matte genera-
tion (including monocular and multi-view techniques) on two
public datasets', showing significant gain in accuracy (Fig. 3-
4). Future work will explore alternative appearance models
for colour texture to further enhance robustness in cases
of illumination change and common foreground-background
appearance.

!Ground truth mark-up and results are available for research purposes at
http://cvssp.org/cvssp3d.
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