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Abstract—A real-time algorithm for accurate localization of
facial landmarks in a single monocular image is proposed. The
algorithm is formulated as an optimization problem, in which
the sum of responses of local classifiers is maximized with
respect to the camera pose by fitting a generic (not a person-
specific) 3D model. The algorithm simultaneously estimates a
head position and orientation and detects the facial landmarks
in the image. Despite being local, we show that the basin of
attraction is large to the extent it can be initialized by a scanning
window face detector. Other experiments on standard datasets
demonstrate that the proposed algorithm outperforms a state-of-
the-art landmark detector especially for non-frontal face images,
and that it is capable of reliable and stable tracking for large set
of viewing angles.

I. INTRODUCTION

Facial landmarks refer to characteristic points on a face like
the corners of the mouth, the corners of the eyes or the tip of
the nose. Detection of facial landmarks in images of faces is
an important step in most face image interpretation tasks.

Most existing facial landmark detectors simultaneously
model local appearance around the landmarks and their geo-
metrical configuration. The local appearance is described either
by generative models (e.g. [1]) or by discriminatively trained
detectors (e.g. [2]). The geometrical structure of the landmarks
is usually modeled by a Point Distribution Model [3], describ-
ing the landmark positions of a face in canonical pose, and by
a subsequent transformation from the canonical pose into 2D
image coordinates. Both PDM of 2D shapes (e.g. [1]) and
3D shapes have been proposed (e.g [4]). Fitting the shape
models into image requires optimization of a highly non-
convex fitness function typically carried out as local gradient
search sensitive to the initial estimate. The problem with local
optima is mitigated either by re-initializing the optimization, or
by using global but expensive optimization methods (e.g. [5])
or by simplifying the shape model. A prominent example of
a simplified 2D shape prior is the Pictorial Structure Model
(e.g. [6]) representing the shape by a pair-wise energy function
whose global optimum can be found efficiently by dynamic
programming. Excellent results of PSM based facial landmark
detectors have been demonstrated e.g. in [7], [8]. On the other
hand, the PSM detectors can describe only a limited range of
face poses and thus a multi-view detector must be composed
of several PSMs (e.g. [7]). Currently, it is not fully understood
how the PSMs fitted by a global method compare to the
genuine 3D shape models fitted by local methods.

In this paper we show that a robust and sufficiently precise
landmark detector is obtained by fitting the simplest possible

Fig. 1. The proposed method jointly estimates the position of seven facial
landmarks in the image and the head pose (position and orientation) with
respect to the camera frame. The landmarks are shown as circles and the pose
is visualized by projecting a virtual 3D cube around the head into the image.
The method is robust, the classifier generalizes even to images of an artistic
engraving or a bronze statue.

3D shape model into the image using a full projective transfor-
mation. The method fits the 6D pose of the mean face, obtained
by the process defined in Sec. II-B, and outputs 2D landmark
positions together with 3D position and orientation of the face.
In addition, we propose a novel method for discriminative
learning of the local detectors used to guide the fitting of the
6D pose. We learn a scoring function whose value decreases
approximately linearly with the Euclidean distance from the
true landmark position. This method produces unimodal peaks
around the true landmark positions which helps to make
the basin of attraction sufficiently large. The closest to our
approach is the work of [2], who employ a 3D shape model,
that has an extra degree of freedom compared to our method.
Other differences include the assumed camera model, weak
perspective in [2] vs. full perspective, and the local detector
learning, standard AdaBoost [2] vs. the novel learning method.
Contributions of the paper are:

1) We show that modeling shape by a 3D mean face (not
a person specific model) and a fully projective trans-
form is enough to obtain precise landmark positions
and the head pose estimation.

2) We propose a novel method for learning local land-
mark detectors which produces nicely behaving score
functions with a large basin of attraction.

3) We provide a thorough comparison of the proposed
method with a state-of-the-art implementation of
PSM based detector [8]. The compared methods use
exactly the same local detectors and differ just in the
used shape prior. We show that both models provide
comparable accuracy on near-frontal images but 3D
shape model consistently wins on profile faces.
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Fig. 2. An example of color-coded coded classifier scores computed inside
the face-detector bounding-box (normalized to 100 × 100 pixels): an inner
left eye corner, a left mouth corner, a nose tip.

II. FACIAL LANDMARKS AND A HEAD POSE

The problem addressed includes: (1) localization of land-
marks in the image, and (2) estimation of the head pose, i.e., a
position and orientation with respect to the camera coordinate
system. Our solutions uses local classifiers. Each landmark
classifier takes the image and for a query pixel returns a score
proportional to how likely the landmark occurrence centred
at the pixel is, see Sec. II-A. Having the landmarks detected
in the image, and their 3D model, it is possible to estimate
the pose of the model, as described in Sec. II-B. Finally, we
show that these two problems (the landmark detection and head
pose estimation) are coupled and can be solved as a single
optimization problem. This is described in Sec. II-C.

A. Local landmark classifiers

Let us define a score function ci(x, I) which evaluates the
likelihood of the i-th landmark being at position x in the image
I , i.e. the most likely position is x̂i = argmaxx∈Xi

ci(x, I)
where Xi denotes the searched positions. We consider a
linearly parametrized score ci(x, I;wi) = 〈Ψ(x, I), wi〉 where
〈·, ·〉 stands for a dot product, Ψ(x, I) ∈ <n denotes a
feature descriptor applied on a patch cropped from the image
I around the position x and wi ∈ <n is a weight vector
associated with the i-th landmark. We construct the feature
descriptor Ψ(x, I) by concatenating the Local Binary Patterns
(256 valued code assigned to patch 3 × 3) computed in all
positions of the cropped patch normalized to size 20 × 20,
10 × 10 and 5 × 5 pixels, respectively. By this process we
obtain 256(182 + 82 + 32)-dimensional sparse (182 + 82 + 32

non-zero elements) binary feature descriptor whose values are
to some extent invariant against a scale and lighting conditions.
The side of the cropped squared patch is 0.3 of the bounding
box side returned by the face detector.

The proposed method uses these score functions to guide
the search for the most likely configuration of the 3D face
pose. It is common to learn the score functions by two-
class classification methods, like the Support Vector Machines
or AdaBoost, learning the score that best separates example
patches collected at the true positions from the patches sam-
pled around the true position. These methods do not take
the distance from the true landmark position explicitly into
account. In turn, there is no guarantee that the learned score
will form unimodal peaks around the true positions. In this
paper we propose a different approach which learns the score
function such that its value decreases at least linearly with the
Euclidean distance measured from the truth landmark position.
To this end, we define the loss `i(x, I, wi) = maxx′∈Xi

(
‖x′−

x‖+ 〈Ψ(x′, I), wi〉− 〈Ψ(x, I), wi〉
)

where x denotes the true
position of the i-th landmark in the image I . It is seen that

the value of `i(x, I, wi) upper bounds the Euclidean distance
between the true position x and the position with maximal
score, i.e. x̂i = argmaxx∈Xi

ci(x, I).

Given a training set {(I1,x1
i ), . . . , (I

m,xmi )} containing
pairs (Ij ,xji ) of image Ij and the ground truth positions xji
of the i-th landmark, we learn the parameters wi of the score
function ci(x;wi) by solving

wi = argmin
w∈<n

(λ
2
‖w‖2 +

1

m

m∑
j=1

`i(x
j
i , I

j , w)
)
, (1)

where λ > 0 is a positive constant penalizing large weighs
in order to prevent over-fitting and its optimal value is tuned
on a separate validation set. The problem (1) can be seen as
an instance of the Structured Output Support Vector Machines
with margin-rescaling loss [9]. The formulation (1) translates
learning of the i-th local detector to an unconstrained convex
optimization problem which can be solver efficiently, e.g. we
use the cutting plane algorithm [10].

B. From landmarks to 6D head pose

Once the landmarks are detected in the image, it is pos-
sible to estimate the head position and orientation. However,
additionally a 3D model of the landmark configuration, and
certain parameters of the camera projection are also needed.

We denote a vector v = (v1, v2, v3)T , its homogeneous
extension is denoted as ṽ = (v1, v2, v3, 1)T , and the operator
which transforms a vector to Euclidean representation as
[v]E = (v1/v3, v2/v3)T . A perspective camera K[R(Φ) | t],
with intrinsic matrix K, rotation matrix R parametrized by
Φ = (α, β, γ)T which are roll, pitch, yaw angles respectively
and the translation t = (tx, ty, tz)

T projects a 3D point
Xi = (Xi, Yi, Zi)

T into a 2D image image point

xi = (xi, yi)
T =

[
K[R(Φ) | t]X̃i

]
E
. (2)

Now assume, the camera intrinsic matrix K is known and
a 3D model of the landmarks Xi as well as the 2D landmark
points si = (six, s

i
y)T detected in the image are given. The

position t and orientation Φ of the 3D model with respect to
the camera, i.e., the 6D pose, is then calculated based on N
correspondences between the 3D model points and 2D image
points Xi ↔ si. Then,

{Φ∗, t∗} = arg min
Φ,t

N∑
i=1

∥∥∥si − [K[R(Φ) | t]X̃i

]
E

∥∥∥
2

(3)

minimizes the sum of geometric re-projection errors
‖si − xi‖2. Problem (3) is known as the Perspective n-
Point problem (PnP) [11], [12]. A minimal number of points
determining the camera pose is 3. The P3P is one of the
minimal problems in computer vision. It has an algebraic
solution which leads to a set of polynomial equation with
several real solutions. In cases the set of correspondences
may contain outliers, the minimal solution is repeatedly used
in a RANSAC scheme [13]. After the outliers are removed,
the problem (3) is iteratively solved by Levenberg-Marquardt
optimization starting from the solution having the maximum
support in RANSAC. This is a strategy we follow in case of
estimating the pose from given landmarks.



The algorithm requires 3D positions of landmarks Xi,
which are usually not available precisely, since a 3D shape of
the face is difficult to obtain from a single image. Nevertheless,
similarly to [14] we use an average model of the 3D configura-
tion of the landmarks computed over a dataset of subjects. The
model was built from the MultiPie dataset [15]. This is a multi-
view dataset consisting of images of 250 subjects captured by
synchronized cameras around each subject. Using a standard
structure from motion [16], we first reconstruct full calibration
of all cameras. Then having a manual annotation of facial
landmarks in the images, we triangulate their 3D positions.
Each such 3D landmark model is normalized to canonical
coordinates: The model is scaled so that the distance between
the eye centres was equal to 1. The model is translated,
such that the zero point was at the centre of gravity of all
reconstructed landmarks. Finally the model is rotated, such that
the horizontal direction coincided with the direction from the
left to the right eye centre and the vertical direction coincided
with the direction from the centre of the mouth corners to the
to the centre between the eyes. The 3D models in canonical
coordinates of all subjects are therefore registered. Then, the
average model Xi of N landmarks is the average out of 100
subjects. This 3D model is used in all our experiments.

The method assumes the knowledge of camera calibration
K which is usually not available. Nevertheless, a reasonable
guess on the camera intrinsic parameters can be typically
made. In all experiments, we placed the principal point in the
centre of the image and the focal length equal to the maximum
of the image width and image height (sensor width in pixels).
The same guess on the camera calibration is made in the
popular Bundler [16] when the calibration is not available.
This parameter is not critical, we show in many experiments
that the choice we made leads to a good precision in landmark
detection and accuracy of the orientation. Of course, the focal
length influences the translation. The estimated face position
is either closer or farther then the estimated value if the true
camera has a different focal length.

In [14], [2], an affine camera model is used, which has the
advantage of a simple solution of the model parameters. We
use a full perspective camera. We aim to use the algorithm
in a situation when the affine camera is not a suitable model,
as e.g. a laptop webcam. A person may be very close to the
camera, with a wide field of view. The differences of depth of
the facial landmarks are no longer negligible to the distance
to the face centre. This is exactly the situation when the affine
camera approximation is poor as explained in [17], p. 169.

C. Joint estimation of landmarks and the head pose

The pose estimation algorithm presented in the previous
subsection has satisfactory performance when the landmarks
are provided accurately. However, since they are detected by a
separate algorithm that does not enforce their locations to be
a projection of a 3D model, the method is sensitive to their
fluctuations. Moreover, the 3D model itself provides an excel-
lent prior on the configuration of the landmarks in the image.
Therefore we formulate the tasks of detection of landmarks
and the head pose estimation as a single optimization problem

{Φ∗, t∗} = arg max
Φ,t

N∑
i=1

ci
([

K[R(Φ) | t]X̃i

]
E

)
, (4)

where ci(xi) stands for a classifier response of landmark
i, see Sec. II-A, located at image position xi. Notice that
this problem is very similar to problem (3), but instead of
optimizing the re-projection error, we propose to optimize
the sum of responses of individual landmark classifiers with
respect to the camera pose.

Landmarks xi are found by projecting the 3D model Xi

into the image by the camera at the optimum rotation and
translation {Φ∗, t∗} according to eq. (2).

The maximum of (4) is found iteratively by gradient
descent. The gradient of the criterion has a special structure.
To simplify the notation, let us collect all parameters into
Θ = {Φ, t}, and denote the projection of i-th model point
into the image as pi(Θ) =

[
K[R(Φ) | t]X̃i

]
E

= (xi, yi)
T .

Then the criterion in (4) becomes F (Θ) =
∑N
i=1 ci

(
pi(Θ)

)
.

The gradient with respect to the parameters is

∂F (Θ)

∂Θ
=

N∑
i=1

∂ci
(
pi(Θ)

)
∂Θ

=

N∑
i=1

∂ci
(
pi(Θ)

)
∂pi(Θ)

∂pi(Θ)

∂Θ
, (5)

where

∂ci
(
pi(Θ)

)
∂pi(Θ)

=
[
∂ci(xi,yi)

∂xi
, ∂ci(xi,yi)

∂yi

]
= Jc

i
(
pi(Θ)

)
, (6)

∂pi(Θ)

∂Θ
=

[
∂xi(Θ)
∂θ1

, . . . , ∂xi(Θ)
∂θ6

∂yi(Θ)
∂θ1

, . . . , ∂yi(Θ)
∂θ6

]
= Jp

i(Θ). (7)

The gradient is therefore a sum of products of two matrices.
Matrix Jp

i(Θ) is the 2 × 6 Jacobian matrix. The derivatives
are rather complex due to a non-linear nature of the mapping
pi(Θ), but they are computed analytically. Matrix Jc

i(xi, yi)
of size 1× 2 is spatial gradient of the classifier response. The
derivatives are computed using a symmetric Gaussian kernel
of size σ and finite differences. The scale σ influences how far
the gradient “sees”, nevertheless too large σ may smooth the
responses too much and mislead the optimization. Moreover,
a classifier has to be evaluated in a window of 4σ× 4σ pixels
around the target pixel, which can be expensive for large σ.
Empirically we found that σ = 3 works well and this value is
used in all our experiments.

The initialization {Φ0, t0} is required. Nevertheless, the
algorithm often converges to a correct solution even when the
initial solution was far away from the correct one. This ability
allows the algorithm to be initialized by a face detector which
provides raw estimate on the face position and a dominant
head orientation. Of course, the algorithm can be initialized by
any landmark detector, including [8]. In this case, the initial
solution is computed by (3).

The single 3D landmark model is used for all subjects
across various facial expressions. The algorithm fits this model
to the data in fact. This is neither a problem even for atypical
faces (e.g. children) nor facial expressions, since the variation
of canonically normalized faces is surprisingly small, the set
of landmarks we are using is rather rigid, and the classifier is
tolerant to possible small displacements, see Fig. 2.

The proposed algorithm has a very low computational
complexity. The proposed algorithm has the data model of
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Fig. 3. Camera pose error statistics on the Multipie dataset.
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Fig. 4. Relative landmark displacement statistics on the Multipie dataset.

the same kind as Flandmark algorithm [8]. Though Flandmark
returns a global optimum (of a different criterion), it evaluates
the classifier exhaustively in a large area around each landmark
and then a discrete optimization problem is solved by running
dynamic programming on the tree. However, optimization (4)
requires only 5–30 iterations. Evaluating the criterion as well
as the gradient is cheap.

III. EXPERIMENTS

We demonstrate that the proposed method is robust and
accurate in both landmark detection and head pose estimation,
and that it can be easily used for tracking. We compare with
several baseline methods:

1) independent. This is a very naı̈ve baseline, where
the landmarks are found as locations of the maxi-
mum response of individual classifiers over the entire
bounding box of the face detector. The pose is found
by the PnP method, see Sec. II-B.

2) face-detector. This baseline is based on the face-
detector only. We use a commercial detector1 based
on Waldboost [18] which is able to detect non-frontal
faces. Besides the bounding-box, it also returns a raw
estimate of yaw angle γ. This gives us an estimate
of head orientation Φ = (0, 0, γ). A position (and
size) of the bounding-box gives an initial estimate of
head position t. Landmarks are found by projecting
the 3D model into the image by (2).

1Eyedea recognition, Ltd. http://www.eyedea.cz/

0 0.1 0.2 0.3
0

20

40

60

80

100

relative feature error [−]

p
e
rc

e
n
ta

g
e
 o

f 
o
c
c
u
ra

n
c
e
s
 [
%

]

Cumulative histograms of mean error

 

 

independent
facedetector
flandmark
optim−detec
optim−fland
optim−detec+fland

0 0.1 0.2 0.3
0

20

40

60

80

100

relative feature error [−]

p
e
rc

e
n
ta

g
e
 o

f 
o
c
c
u
ra

n
c
e
s
 [
%

]

Cumulative histograms of max error

 

 

independent
facedetector
flandmark
optim−detec
optim−fland
optim−detec+fland

Fig. 5. Results on the LFW dataset - cumulative histograms of a relative
displacement error.
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Fig. 6. Results on the AFLW dataset - cumulative histograms of a relative
displacement error. The upper row are results on the entire dataset, the lower
lower row are results on the subset of non-frontal faces.

3) flandmark [8]. This algorithm is a recent award-
winning algorithm for facial landmark detection. The
head pose is found by the PnP method, see Sec. II-B.

4) optim-detec. This is a proposed method solving (4)
initialized by {Φ, t} obtained by the face-dector as
described above. The method does not depend on
flandmark, it is its alternative.

5) optim-fland. The same as above, but it is initialized
by the pose from landmarks detected by flandmark.

6) optim-detec+fland. This is a method which com-
bines optim-detec and optim-fland. It is initialized
by both the face detector and flandmark and the final
solution is selected that has a better value of the
criterion in (4).

Standard error statistics to evaluate the landmark preci-
sion were used. Given the ground-truth locations of land-
marks in the image (obtained by manual annotation) xgti
and landmarks found by an algorithm xi, we define the
mean and maximum relative displacement errors: ē =
1
κN

∑N
i=1

∥∥xgti − xi
∥∥
2
, emax = 1

κ maxi
∥∥xgti − xi

∥∥
2
, where

normalization κ is the length of the facial mid-line in pixels (a
distance between the centre of the eye-centres and the centre
between mouth corners). In case that not all the ground-truth
landmarks are annotated, this value is estimated from the size
of the ground-truth bounding box a×a as κ = 0.3749a, where



Fig. 7. Samples from the MultiPie dataset. The proposed optim-detec+fland (green, circles) and flandmark (blue, crosses).

the coefficient is found from images with a full annotation.

All algorithms always output 7 landmarks: outer and inner
eye corners, mouth corners, and the nose tip. The tested meth-
ods were evaluated in three standard datasets: MultiPie [15],
LFW [19], and AFLW [14].

A. The MultiPie dataset

The MultiPie dataset [15] contains images of 250 subjects
synchronously captured by cameras displaced by about 15
degrees around each subject, see Fig. 7. The advantage of this
dataset is that the multi-camera setup provides a ground-truth
for the head orientation and position. As already discussed in
Sec. II-B, a subject specific 3D landmark model is obtained by
triangulating the ground-truth landmark annotation using full
camera calibration [16] and normalization into the canonical
coordinates. Then for an image, having the ground-truth land-
mark annotations xgti in it, we found the ground-truth pose
{Φgt, tgt} by PnP using the subject specific 3D model and
the truth cameras. To increase accuracy of the ground-truth
pose, we use full set of 21 landmarks which were annotated
manually. This set includes extra landmarks as ears, chin,
eyebrows, etc.

The orientation error in roll, pitch, yaw angles was mea-
sured (see Fig. 4 in [14] for a definition) in the range from
-45 to +45 degrees of the yaw angle. The results are shown
in Fig. 3 as mean absolute errors over 100 subjects. The plots
have error bars of standard deviations. We can see, that inde-
pendent algorithm has poor performance, face-detector only
estimate the yaw and since the other angles are close to zero, its
performance is fair. The flandmark algorithm performs well,
but quickly deteriorates with larger angles of yaw, its prior
model does not capture well non-frontal faces. The proposed
methods optim-detec, optim-fland, optim-detec+fland are
better in all experiments. The optimization always improves
results over the initialization. Several examples when the
proposed method outperforms flandmark are shown in Fig. 7.
The error slightly increases for larger angles as well since
the individual landmark classifiers were trained on near-frontal
images. The error is the most significant for the pitch angle.
This is probably caused by the mean 3D model. We observed
that the largest variation in subject-specific models is in the
length of the nose. The discrepancy between the true and used
3D model has an impact in the pitch angle. The position error
is normalized by the eye-distance. Assuming the eye-distance
is 10 cm, for optim-detec+fland, the precision is 1.5 cm for
a subject distant about 100 cm from the camera.

Accuracy of the estimated landmarks ē, emax as a function
of the yaw angle is also measured. The average statistics

LFW AFLW AFLW (non-frontal)
independent 26.75 15.15 7.42
face-detector 23.40 7.02 4.21
flandmark [8] 96.23 59.92 34.32
optim-detec 94.48 64.93 54.66
optim-fland 94.85 64.31 47.27

optim-detec+fland 95.37 69.29 57.80
TABLE I. PERCENTAGE OF IMAGES HAVING AN AVERAGE LANDMARK

DISPLACEMENT ē ≤ 0.1.

over 100 subjects are shown in Fig. 4. Notice that optim-
detec+fland has the average ē < 0.1 for all tested angles.

B. The LFW and the AFLW datasets

The LFW dataset [19] contains typically near-frontal face
images. We tested on a random split of 2.7k images. The
AFLW dataset [14] is a large dataset of various images
downloaded from Flickr. These images, see Fig. 8, seem to be
“wilder” compared to LFW. A large range of viewing angles
in roll, pitch and yaw, the level of varying facial expressions,
the level of occlusions, varying illumination, varying quality
of the images in the sense of focus or motion blur, certain level
of post-processing and artistic effects sometimes present make
this dataset particularly challenging. The difficulty is reflected
in the false negative rate of the face-detector, which was
not outstanding even with multi-view well-trained commercial
detector. It missed about 40% of the annotated faces, which
were excluded from the evaluation. Furthermore, we decided
to exclude too small faces (smaller than 150 px), which seems
to have fairly imprecise manual annotation. This results in a
set of 14.2k faces. Additionally, we selected another subset
of non-frontal images. This subset is selected as those images
having either of roll, pitch, yaw angles grater than 25 degrees.
This subset of 2.8k faces we denote AFLW non-frontal.

Relative displacement errors (ē, emax) were measured. The
results as cumulative histograms are presented in Fig. 5 and
Fig. 6. For LFW, the results of flandmark and all proposed
methods are almost identical. For much more difficult AFLW
dataset, performance for all tested algorithms is lower, however
all proposed methods outperform flandmark. This is espe-
cially significant for AFLW non-frontal. These observations
are summarized in Tab. I, which shows a percentage of faces
having an average landmark displacement ē ≤ 0.1. As shown
in [8], this level of the average displacement is considered an
acceptable solution and takes a limited precision of the man-
ual ground-truth annotation into account. For AFLW optim-
detec and optim-fland have almost equal results despite they
are initialized very differently, optim-detec+fland outperforms
flandmark by almost 10%. For AFLW non-frontal, optim-
detec+fland is better by 23% than flandmark.



Fig. 8. Selected results on the AFLW dataset. The proposed optim-detec+fland (green, circles) and flandmark (blue, crosses).

Fig. 9. Tracking. See the robustness against a wide range of angles,
fast motions, partial occlusions, and facial expressions in supplementary
videos http://cmp.felk.cvut.cz/∼cechj/icpr2014/ .

Considering the challenges in the AFLW dataset, and that
the proposed method is not designed to be working in profile
views (or views where not all landmarks are visible) since
local classifiers are trained in near-frontal images and since
occluded landmarks corrupt the optimization (4).

C. Tracking

It is natural to use the proposed local optimization method
in a tracking task. Pose {Φ, t} of the first frame of the
sequence is found by optim-detec+fland. The optimization (4)
of subsequent frames is initialized by the solution of the
previous frame. Despite the difficulty of the tested sequences,
see Fig. 9, including large angle ranges, fast motions, partial
occlusion, speech and facial expressions, the algorithm does
not loose a track in about 0.6k and 1.7k frames respectively.
This qualitative result confirms the robustness and stability of
the proposed optimization scheme.

IV. CONCLUSION

We have presented a real-time local optimization based
method which has good results in landmark detection and
refinement, head pose estimation and tracking. We tested on
three standard datasets. Under a comparable condition, with
similar data model, the algorithm outperforms algorithm [8],
a recent award winning algorithm, by a significant margin in
a difficult AFLW [14] dataset (by 10% in the entire set and
by 23% in the non-frontal subset). This success is based on a
simple, but satisfactory 3D modelling (without using a person
specific model) employing a perspective camera in conjunction
with a novel learning of local classifiers.
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