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Abstract—Scale invariant texture analysis is a fundamental
challenge in image processing. As a consequence of the scale
invariance, these kind of features are often characterized by a
lower discriminative power. We observed, that scale invariant
features did not pose a benefit in classification scenarios with
varying scales in the training set. This is supposed to be an effect
caused by an implicit scale selection done by the classification
method. In this work, we analyze this effect based on the k-nearest
neighbor classifier. Inspired by this effect, we employ global
scale estimation algorithm utilizing scale-normalized Laplacian
of Gaussian extrema in scale space, to improve the classification
accuracies of scale variant features in a scenario with varying
scales. We propose a general framework for scale-adaptive clas-
sification, which proved to improve the classification accuracies
with a variety of feature extraction methods in such a scenario.

I. INTRODUCTION

Scale invariant texture analysis is a fundamental challenge in
image processing. This theoretically alleviates the restriction
that texture data has to be acquired at a constant distance to the
camera, a property which is highly relevant in practice. In order
to achieve scale invariance, various approaches exist. In Zhang
et al. [1], a review about invariant texture analysis methods is
presented. Another survey of Hegenbart et al. [2] investigates
scale invariance in combination with medical image data.
However, experiments have shown that many features that are
not explicitly scale invariant [3], [4], [5], [6], [7], [8], [9],
are performing effectively in terms of classification accuracy
in scenarios with variably scaled textures. We observed, that
scale invariant features in general do not outperform these
scale variant features, a behavior caused by a decrease of the
discriminative power due to the invariance. The rationale for
using scale-invariant feature is based on the assumption that
the intra-class variability within a scale of a texture generally is
lower than the intra-class variability over multiple scales. As a
consequence, scale-variant features exhibit a higher intra-class
variability over multiple scales as compared to scale-invariant
features. Therefore, a pair of feature vectors with the same
scale of a texture class has a higher probability to be closer (in
terms of the feature distance) as compared to feature vectors of
a texture class at different scales. This property implicitly leads
to a kind of scale selection during the classification process
when using scale-variant features. Especially, the partitioning
performed by the k-nearest neighbor classifier increases this
effect.

In this work, we particularly investigate the implicit scale
selection mechanism of the k-nearest neighbor method. In a
large experimental setup we evaluate this effect using a variety
of scale-variant and scale-invariant feature extraction methods.
Moreover, we propose a framework to increase this beneficial

effect. Based on a global scale estimation algorithm utilizing
scale-normalized Laplacian of Gaussian extrema in scale space
we utilize the superior discriminative power of scale-variant
features in a scale-adaptive classification.

This paper is structured as follows. We describe the scale
estimation algorithm in Section II. The proposed scale-adaptive
classification framework is covered in Section III. The con-
ducted experiments are explained and discussed in Section IV.
Section V finally concludes this paper.

II. SCALE ESTIMATION

We employ a global scale estimation algorithm [10] which
is based on scale-normalized Laplacian of Gaussian extrema
in scale-space. The scale-space theory was first extensively
explored in the field of signal processing by Lindeberg [11].It
presents a framework to analyze signals at different scales.
Let f : R2 7→ R represent a continuous signal, then the linear
scale-space representation L : R2 × R+ 7→ R is defined by

L(·;σ) = g(·;σ) ∗ f, (1)

with initial condition L(·; 0) = f . Where σ ∈ R+ is the
scale parameter, g is a Gaussian function and “∗“ denotes
convolution. The scale-space family L is the solution to the
diffusion equation (heat equation):

∂σL = σ

(
∂2L

∂x2
+
∂2L

∂y2

)
= σ4L. (2)

We construct the scale-space and compute the scale-normalized
Laplacians (σ2 |4L(·;σ)|, denoted as 4I(·;σ)) of each image
I at each location x ∈ N2 at different scales with σ =
c
√
2
k
, k ∈ {−4,−3.75, . . . , 7.75, 8} and c = 2.1214. Note

that the parameter c acts as a scaling factor of the scale-space
and was initially chosen such that the center scale equals a 3
pixel radius. We however found during experimentation that
the intrinsic scale of natural textures tends to be large. We
therefore expanded the scale-space to cover larger scales as
well. Methods based on scale selection employing the scale-
space abstraction identify image locations which are simul-
taneously a local extremum with respect to both the spatial
coordinates and the scale-space parameter (3D maxima), a
prominent example is the Scale Invariant Feature Transform
(SIFT [12]).

Experimentation has shown however that the utilization
of such locations for a global scale estimation is unreliable.
This can be seen in Figure 1, comparing the distribution of



Fig. 1: Distribution of 3D-Maxima compared to the Response of ξ.

the responses of the 3D maxima with the responses of the
scale estimation function ξ for three scaled versions of an
image of the KTH-TIPS database. The x-axis denotes the scale
level within scale space and the y-axis denotes the average
normalized response at the specific scale level. This property
especially holds in the case of non-regular textures as shown
in Figure 2. Considering this type of textures, the extrema
are either at various different scales or only a small number
of extrema is present, leading to unreliable scale estimations.
We therefore use the distribution of responses of the scale
normalized Laplacians to estimate a global scale. The scale
estimation response function ξ is

ξ(t) :=
∑
x,y

4I(x, y; t). (3)

The global scale is identified by searching for the first local
maximum of ξ which is then used as seed point for a least-
squares Gaussian fit. By using the first local maximum we
are capable of consistently estimating the scale of textures ex-
hibiting more than a single dominant scale. The quality of the
estimation is improved by considering only data points within
a certain offset from the seed point. In our implementation an
offset of ±5 scale levels is used to fit the Gaussian function.
Finally the mean value s̃ of the fitted Gaussian function is
interpreted as the dominant level in scale-space. The standard

Fig. 2: Scale Estimation of a non-Regular Texture (stone2).

deviation u of the fitted Gaussian is used as uncertainty of
the estimation. Figures 2 and 3 illustrate the fitted Gaussian
function (dashed line) to the scale estimation response function
(solid line) of three textures at different scales.

The response of the scale-normalized Laplacian of Gaus-
sian (LoG) attains a maximum if the zeros are aligned with a
circular shaped structure. Hence scales estimated, based on the
LoG, correlate strongly with the scale of the dominant circular
shaped structures of a texture. As a consequence, the estimated
scale is highly related to an essential property of each texture,
the intrinsic scale of a texture.

A texture exhibiting pebbles for example and a texture
exhibiting sand, captured at the same distance, might have
equal scales in terms of camera-scale, but different scales in
terms of the scale-space, a consequence of different intrinsic
scales. In contrast, sand and pebbles captured at a different
camera-scales, corresponding to the difference of the textures’
intrinsic scales, are equal in scale in terms of the scale-
space. Scales estimated in the scale-space domain are therefore
always a combination of the intrinsic texture scale and the
camera-scale.

The identification of an intrinsic scale of a general texture
is a non-trivial problem. A requirement for an intrinsic scale
estimation method would be scale-invariance, a property that
the LoG response in scale-space does not provide. The esti-
mated scale in scale-space is therefore always a combination

Fig. 3: Scale Estimation of a non-Regular Texture (linen).
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Fig. 4: Analysis of Implicit Scale Selection using the KTH-TIPS Database.
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Fig. 5: Analysis of Implicit Scale Selection using the Kylberg Database.

of camera-scale and intrinsic texture scale.

A. Performance

We evaluated the performance of the scale estimation algo-
rithm to assess the practicality of the method in an experi-
mental setup with a huge number of data. We estimated the
scales based on a data set comprised of 40300 images with a
dimension of 128× 128 pixels each.

Our implementation was written in Java (JDK 8) utilizing
parallel processing. The experiment was conducted on an i5-
2400 CPU with 4 cores running at 3.10 GHZ. We assume
that an implementation written in a language that is compiled
to binary executable code, or an implementation utilizing
GPU hardware, could improve the performance even further.
Figure 6 shows the average execution time (with the respective
standard deviation) based on a set of scale-space parameters.
The horizontal axis denotes the number of used scales within
the scale-space. The computational complexity is approxi-
mately linear in the number of scale levels in the scale-space.
The deviation can be explained by the varying times consumed
for fitting the Gaussian function. Our implementation utilizes
a scale-space constructed by 46 scale levels.

III. SCALE-ADAPTIVE CLASSIFICATION

We define the certainty criterion κ based on the uncertainty
measure of the scale estimation u, which corresponds to the
standard deviation of the fitted Gaussian function:

κ(u) =

{
1, u < Tu
0, otherwise .

(4)

For the threshold Tu, a value found to be reasonable during
development was Tu = 25. If the scale response function
ξ cannot be approximated using Gaussian fitting (either the

algorithm does not converge or the result is not in R), the
scale estimation is also defined as unreliable (setting u =∞).

Consequently, we compute a distance matrix (M = (mij))
containing the feature distances between each feature vector
from the training set Fi and each feature vector from the eval-
uation set Fj . In a non-scale-adaptive classification scenario,
the elements of M are defined as

mij = d(Fi, Fj) , (5)

where d is a distance measure. For scale-adaptive classification,
we redefine the computation of the distance matrix as follows:

mij =


d(Fi, Fj), if κ(uj) = 0

d(Fi, Fj), if κ(ui)κ(uj) = 1

∧ |s̃i − s̃j | < Ts
∞, otherwise ,

(6)

where s̃i and s̃j correspond to the estimated levels in scale-
space. During experimentation the Euclidean distance measure
is utilized as d. If the estimated scale of a feature vector
in the evaluation set is unreliable (κ(u) = 0), the scale-
adaptive classification is not feasible for this feature vector.
We therefore utilize the standard classification scheme for such
feature vectors. Feature distances for vectors in the evaluation
set with a reliable scale estimation (κ(u) = 1), are only
computed for reliable training vectors with an absolute relative
scale difference below a certain threshold Ts. The remaining
matrix elements are set to ∞, practically ignoring them for
classification.

The threshold Ts adjusts the range of allowed relative
scale differences. A small Ts leads to a narrow range of
similar scales for classification, but also to a significantly
reduced size of the training set. Higher values of Ts result
in a diminished effect of scale adaptiveness due to the broad
range of considered image scales. To avoid over-fitting, Ts for



(a) KTH-TIPS Database (b) Kylberg Database

Fig. 7: Classification Accuracies with varying Thresholds (Ts).

each distinct feature is found by exhaustively searching for the
most appropriate value of Ts (with respect to the classification
accuracy), using the opposing database. The thresholds used in
Section IV-D for experiments based on the Kylberg database
where found based on the KTH-TIPS database and vice versa.
Figure 7 shows the classification accuracies with varying
thresholds Ts. The ⊕ symbol denotes the actual thresholds
used for our experiments discussed in Section IV-D. We
observe the tendency, that the used thresholds are slightly too
high in case of the Kylberg data set and too low in case of
KTH-TIPS. We assume, that this is an effect caused by the big
difference of the database sizes. A too low threshold would
cause the training set to be at an unreasonable size, in case of
the smaller KTH-TIPS. As a result, the identified threshold for
the Kylberg data set is too high and vice versa for KTH-TIPS.

IV. EXPERIMENTS

We study the implicit scale selection effect of the k-nearest
neighbor classifier to give a comprehensive overview of this
effect in relation to the scale adaptive classification. Addition-
ally, we compare the accuracies of the proposed scale-adaptive
classification in comparison to the traditional classification
based on the implicit scale selection.

A. Experimental Data

The experiments are based on two different gray-scale texture
databases. The KTH-TIPS database [13] exhibits texture im-
ages from 10 different materials captured at 9 different scales

Fig. 6: The Effective Computational Time for Scale Estimation
per Image.

with 9 samples per material. Sub-images of size 128 × 128
pixels were extracted from the center of each original image.
Unfortunately, besides KTH-TIPS there are no other publicly
available high quality texture databases with an available
ground-truth of scales. We therefore had to resort to a simula-
tion of the scaling of textures. A subset of the Kylberg texture
database [14], consisting of 28 materials with 160 unique
texture patches per class, captured at a single scale, was used
for the simulation. The high resolution of each patch (576×576
pixels) allowed us to simulate the scaling without relying
on up-sampling, leading to a smaller amount of interpolation
artifacts. The simulation of scaling was performed according to
the scales of the KTH-TIPS database, interpreting the original
image patches as the maximum scale 21.0. Image patches
of size 128 × 128 were then extracted from the center of
the re-scaled patches. Due to the huge number of samples
in the Kylberg database we use a subset consisting of 20
unique texture patches per class (5 patches per image) for
experimentation. Table I provides detailed information of the
databases used.

Database KTH-TIPS Kylberg
Texture Classes 10 28
Images per Scale 9 40
Different Scales 9 9
Max Relative Scale Difference 4.0 4.0
Images in Training Set 810 10080
Images in Evaluation Set − 10080

TABLE I: Detailed Information on the used Texture Databases.

B. Feature Extraction Methods

In order to measure the impact of scale-adaptive classification,
we use the following texture features. For all features, the
standard parameters are utilized, in order to avoid any bias.

• Local Binary Patterns [3] (LBP):
LBP describes a texture by utilizing the joint distri-
bution of pixel intensity differences represented by
binary patterns. We employ LBP using the standard
8-neighborhood with a radius of 1 pixel.

• Multi-Fractal Spectrum [15] (FRAC):
The local fractal dimension is computed for each pixel
using three different types of measures for computing
the local density. The feature vector is built by con-
catenation of these fractal dimensions. This method is
by design scale-invariant. It is therefore interesting to
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Fig. 8: Classification Results of the Scale-Adaptive Classification.

observe how the implicit scale selection and the scale-
adaptive classification perform based on this method.

• Fourier Ring Features [16] (FOUR):
After computing the Fourier power spectrum (low
frequencies are aligned in the image center), the means
of rings with a width of 1 pixel are calculated. For the
experiments we concatenate the means of 17 equidis-
tant rings between frequency 2 and 20 to construct a
feature vector.

• Haralick Contrast [7] (HAR):
The feature vector consists of the Haralick contrast
feature [7] calculated for different offsets (0, r)T ,
(r, 0)T , (r, r)T , (r,−r)T . The final feature consists
of the 16 dimensions (4 for each r, where r ∈
{1, 2, 3, 4}).

• Shape Curvature Histogram [9] (SCH):
This feature represents the occurrences of the contour
curvature values. The bin count which adjusts the
granularity is set to 16.

• Histogram of Gradients [8] (HOG):
The distribution of gradient orientations is used to
describe a texture. This feature is used with the
standard bin count of 9, which corresponds to an
angular resolution of 20 degrees.

C. Experimental Setup

We perform a specific experiment to assess the implicit scale
selection of the k-nearest neighbor classifier. For each database
(Kylberg and KTH-TIPS), a distinct training and evaluation set
(referred to as parent sets) consisting of images at all given
scales is constructed. In order to assess the overall impact of
scale differences on the implicit scale selection, we analyze the
impact based on specific increasing relative scale differences.
The relative scale difference is defined as the quotient of two
scales. For each analyzed relative scale difference, we select
specific data subsets containing two corresponding scales from
the parent training and evaluation data, for classification. Each
subset includes all images with two corresponding scales for
a specific relative scale difference in a distinct training and
evaluation set.

To evaluate the implicit scale selection of the k-nearest
neighbor classifier, we assess four different properties, as

shown in Figure 4 and 5. The horizontal axes correspond to
the relative scale difference used to create the specific data
subsets. The vertical axes denote the classification accuracies
averaged over the classification outcomes for each subset at a
corresponding relative scale difference.

• Probability of Equal Scales
To validate the assumption that an implicit scale
selection is performed, we analyze scale distribution
of the nearest neighbors. The set of nearest neighbors
of all images for a specific relative scale difference
form this distribution. In this case the vertical axis
denotes the probability of the nearest neighbor of an
image to be at the same scale as the evaluated image
(corresponding to k = 1).

• Implicit Scale Selection
For a relative scale difference, the standard k-nearest
neighbor classification (with k = 2) is performed for
each subset. The choice of k = 2 was motivated
to enable comparability between the implicit and the
restricted scale selection. This corresponds to the
natural classification and reflects the effects of the
implicit scale selection in comparison to the restricted
scale selection.

• Restricted Scale Selection
The restricted scale selection represents the assumed
classification accuracy without implicit scale selection.
We restrict the implicit scale selection by manually
selecting the nearest neighbors for a 2-nearest neigh-
bor classification for a specific image. One nearest
neighbor corresponds to the feature vector with the
minimal distance computed at the first scale in a
specific subset, whereas the other nearest neighbor
corresponds to the feature vector with the minimal
distance computed at the other scale. This method sup-
presses the implicit scale selection of the classifier and
allows a comparison between the restricted scenario
and the natural classification, reflecting the effect of
scale selection.

• Optimal Scale Selection
The optimal scale selection denotes the upper bound
achievable by selecting the same scales for training
and evaluation.



Furthermore, we evaluate the proposed scale-adaptive clas-
sification based on the databases explained in Section IV-A
utilizing the features in Section IV-B. We create two distinct
sets for training and evaluation based on the Kylberg database
using patches of image ”A“ for training and patches of image
”B“ for evaluation. Due do the restricted size of the KTH-TIPS
database, we resorted to using leave-one-out cross validation
in this specific experiment. The data sets are comprised of
images at all available scales. For the final classification, we
utilize the k-nearest-neighbor classifier. The accuracies for k
reaching from 1 to 5 are averaged, in order to get more stable
results.

D. Results

In Figure 4 and 5, the results of the experiments to assess the
implicit scale selection of the k-nearest neighbor classifier are
presented.

Based on the experimental results we observe a consistent
beneficial effect of the implicit scale selection as compared
to the restricted scale selection. We also observe that the
probability of equal scales increases with scale difference. This
indicates that the assumption that the intra-class variability
within a scale of a texture generally is lower than the intra-
class variability over multiple scales holds throughout the
experiments. Interestingly this behavior is also observed for the
FRAC method, which is supposed to be scale-invariant. This is
an indication that feature vectors at different scales still exhibit
a higher degree of difference as compared to feature vectors
at the same scale. The results also show that features with
higher classification accuracy in general benefit more from the
implicit scale selection as compared to features with lower
classification rates. We explain this by the more discriminative
feature vectors which lead to larger differences between feature
vectors at different scales, increasing the effect of the implicit
scale selection. The gap between the optimal scale selection
and the implicit scale selection suggests that there is room for
improvement for a scale-adaptive classification.

Figure 8 presents the enhanced classification performance
of the scale-adaptive classification in comparison to the tra-
ditional classification approach. We observe that the proposed
method improved the classification accuracies with statistical
significance (McNemar’s test [17] with α = 0.05) of all
methods except for the HAR method. This holds for both
independent data sets. An interesting fact is that the accuracy
of the scale-invariant method FRAC could also be improved
utilizing the scale-adaptive classification.

V. CONCLUSION

We have shown that the implicit scale selection mechanism
of the k-nearest neighbor method has a significant impact on
the classification accuracy of data sets comprised of various
scales. We proposed a scale-adaptive classification framework
to increase this beneficial effect utilizing a global scale es-
timation algorithm based on scale-normalized Laplacian of
Gaussian extrema in scale space. Experimentation has shown
that the classification accuracy can be statistically significantly
improved by our method. Due to the partitioning performed
by the k-nearest neighbor classifier we assume the effect of
implicit scale selection to be more significant as compared to

other classification methods such as SVM. We therefore pre-
sume that the proposed framework might pose an even higher
benefit in combination with such a classification method.
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